首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   81篇
  国内免费   3篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   12篇
  2018年   4篇
  2017年   17篇
  2016年   20篇
  2015年   19篇
  2014年   15篇
  2013年   70篇
  2012年   21篇
  2011年   21篇
  2010年   21篇
  2009年   21篇
  2008年   23篇
  2007年   34篇
  2006年   23篇
  2005年   16篇
  2004年   21篇
  2003年   13篇
  2002年   14篇
  2001年   11篇
  2000年   13篇
  1999年   2篇
  1998年   1篇
排序方式: 共有419条查询结果,搜索用时 46 毫秒
301.
The Signal‐to‐Interference‐plus‐Noise Ratio (SINR) is an important metric of wireless communication link quality. SINR estimates have several important applications. These include optimizing the transmit power level for a target quality of service, assisting with handoff decisions and dynamically adapting the data rate for wireless Internet applications. Accurate SINR estimation provides for both a more efficient system and a higher user‐perceived quality of service. In this paper, we develop new SINR estimators and compare their mean squared error (MSE) performance. We show that our new estimators dominate estimators that have previously appeared in the literature with respect to MSE. The sequence of transmitted bits in wireless communication systems consists of both pilot bits (which are known both to the transmitter and receiver) and user bits (which are known only by the transmitter). The SINR estimators we consider alternatively depend exclusively on pilot bits, exclusively on user bits, or simultaneously use both pilot and user bits. In addition, we consider estimators that utilize smoothing and feedback mechanisms. Smoothed estimators are motivated by the fact that the interference component of the SINR changes relatively slowly with time, typically with the addition or departure of a user to the system. Feedback estimators are motivated by the fact that receivers typically decode bits correctly with a very high probability, and therefore user bits can be thought of as quasipilot bits. For each estimator discussed, we derive an exact or approximate formula for its MSE. Satterthwaite approximations, noncentral F distributions (singly and doubly) and distribution theory of quadratic forms are the key statistical tools used in developing the MSE formulas. In the case of approximate MSE formulas, we validate their accuracy using simulation techniques. The approximate MSE formulas, of interest in their own right for comparing the quality of the estimators, are also used for optimally combining estimators. In particular, we derive optimal weights for linearly combining an estimator based on pilot bits with an estimator based on user bits. The optimal weights depend on the MSE of the two estimators being combined, and thus the accurate approximate MSE formulas can conveniently be used. The optimal weights also depend on the unknown SINR, and therefore need to be estimated in order to construct a useable combined estimator. The impact on the MSE of the combined estimator due to estimating the weights is examined. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
302.
In many practical situations of production scheduling, it is either necessary or recommended to group a large number of jobs into a relatively small number of batches. A decision needs to be made regarding both the batching (i.e., determining the number and the size of the batches) and the sequencing (of batches and of jobs within batches). A setup cost is incurred whenever a batch begins processing on a given machine. This paper focuses on batch scheduling of identical processing‐time jobs, and machine‐ and sequence‐independent setup times on an m‐machine flow‐shop. The objective is to find an allocation to batches and their schedule in order to minimize flow‐time. We introduce a surprising and nonintuitive solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
303.
The model considered in this paper involves a tandem queue consisting of a sequence of two waiting lines. The main feature of our model is blocking, i.e., as soon as the second waiting line reaches a certain upper limit, the first line is blocked. The input of units to the tandem queue is the MAP (Markovian arrival process), and service requirements are of phase type. Our objective is to study the sojourn time distribution under the first‐come‐first‐serve discipline by analyzing the sojourn time through times until absorption in appropriately defined quasi‐birth‐and‐death processes and continuous‐time Markov chains. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
304.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
305.
We study a two‐machine flow shop scheduling problem with no‐wait in process, in which one of the machines is not available during a specified time interval. We consider three scenarios of handing the operation affected by the nonavailability interval. Its processing may (i) start from scratch after the interval, or (ii) be resumed from the point of interruption, or (iii) be partially restarted after the interval. The objective is to minimize the makespan. We present an approximation algorithm that for all these scenarios delivers a worst‐case ratio of 3/2. For the second scenario, we offer a 4/3‐approximation algorithm. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
306.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
307.
This paper examines the discrete equal‐capacity p‐median problem that seeks to locate p new facilities (medians) on a network, each having a given uniform capacity, in order to minimize the sum of distribution costs while satisfying the demand on the network. Such problems arise, for example, in local access and transport area telecommunication network design problems where any number of a set of p facility units can be constructed at the specified candidate sites (hence, the net capacity is an integer multiple of a given unit capacity). We develop various valid inequalities, a separation routine for generating cutting planes that are specific members of such inequalities, as well as an enhanced reformulation that constructs a partial convex hull representation that subsumes an entire class of valid inequalities via its linear programming relaxation. We also propose suitable heuristic schemes for this problem, based on sequentially rounding the continuous relaxation solutions obtained for the various equivalent formulations of the problem. Extensive computational results are provided to demonstrate the effectiveness of the proposed valid inequalities, enhanced formulations, and heuristic schemes. The results indicate that the proposed schemes for tightening the underlying relaxations play a significant role in enhancing the performance of both exact and heuristic solution methods for this class of problems. © 2000 John & Sons, Inc. Naval Research Logistics 47: 166–183, 2000.  相似文献   
308.
We study discrete‐time, parallel queues with two identical servers. Customers arrive randomly at the system and join the queue with the shortest workload that is defined as the total service time required for the server to complete all the customers in the queue. The arrivals are assumed to follow a geometric distribution and the service times are assumed to have a general distribution. It is a no‐jockeying queue. The two‐dimensional state space is truncated into a banded array. The resulting modified queue is studied using the method of probability generating function (pgf) The workload distribution in steady state is obtained in form of pgf. A special case where the service time is a deterministic constant is further investigated. Numerical examples are illustrated. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 440–454, 2000  相似文献   
309.
Gamma accelerated degradation tests (ADT) are widely used to assess timely lifetime information of highly reliable products with degradation paths that follow a gamma process. In the existing literature, there is interest in addressing the problem of deciding how to conduct an efficient, ADT that includes determinations of higher stress‐testing levels and their corresponding sample‐size allocations. The existing results mainly focused on the case of a single accelerating variable. However, this may not be practical when the quality characteristics of the product have slow degradation rates. To overcome this difficulty, we propose an analytical approach to address this decision‐making problem using the case of two accelerating variables. Specifically, based on the criterion of minimizing the asymptotic variance of the estimated q quantile of lifetime distribution of the product, we analytically show that the optimal stress levels and sample‐size allocations can be simultaneously obtained via a general equivalence theorem. In addition, we use a practical example to illustrate the proposed procedure.  相似文献   
310.
We consider a dynamic pricing model in which the instantaneous rate of the demand arrival process is dependent on not only the current price charged by the concerned firm, but also the present state of the world. While reflecting the current economic condition, the state evolves in a Markovian fashion. This model represents the real‐life situation in which the sales season is relatively long compared to the fast pace at which the outside environment changes. We establish the value of being better informed on the state of the world. When reasonable monotonicity conditions are met, we show that better present economic conditions will lead to higher prices. Our computational study is partially calibrated with real data. It demonstrates that the benefit of heeding varying economic conditions is on par with the value of embracing randomness in the demand process. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 66:73–89,2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号