首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   117篇
  国内免费   19篇
  2023年   5篇
  2022年   3篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   1篇
  2017年   14篇
  2016年   18篇
  2015年   19篇
  2014年   20篇
  2013年   20篇
  2012年   18篇
  2011年   14篇
  2010年   17篇
  2009年   27篇
  2008年   18篇
  2007年   24篇
  2006年   29篇
  2005年   15篇
  2004年   19篇
  2003年   11篇
  2002年   9篇
  2001年   13篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   10篇
  1989年   4篇
  1988年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
191.
In this paper, we study the problem of scheduling quay cranes (QCs) at container terminals where incoming vessels have different ready times. The objective is to minimize the maximum relative tardiness of vessel departures. The problem can be formulated as a mixed integer linear programming (MILP) model of large size that is difficult to solve directly. We propose a heuristic decomposition approach to breakdown the problem into two smaller, linked models, the vessel‐level and the berth‐level models. With the same berth‐level model, two heuristic methods are developed using different vessel‐level models. Computational experiments show that the proposed approach is effective and efficient. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
192.
Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in premedication and infusion durations. In this paper, we formulate a two‐stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real‐life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty.  相似文献   
193.
为解决指挥系统控制中的调度困难,研究了一类特殊的传感器资源调度问。主要分析了跟踪目标的探测次数、时间间隔和传感器资源等约束条件。用跟踪目标的重要程度之和作为目标函数,建立了一个0-1规划的数学模型,再利用变换将其转化为0-1线性整数规划模型。利用割平面法求解得出最优调度策略,其能在工作量饱和的情况下合理调度传感器资源。为提高求解速度,提出了对应的模拟退火算法。通过对一些不同规模实例的求解,在资源利用率和算法的求解速度等指标上,与割平面法及遗传算法进行对比分析,验证了模型的有效性和模拟退火算法求解的高效性。  相似文献   
194.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   
195.
本文讨论了在大规模并行计算机上实现数据并行程序设计语言的关键问题──分布数组的地址计算问题。文中详细给出了维分布数组的下标地址计算公式,分布数组的内情向量结构以及分布数组映射函数算法,并对有关编译实现技术进行了探讨。  相似文献   
196.
测试点的选取问题   总被引:4,自引:1,他引:3       下载免费PDF全文
在故障检测的过程中 ,每个测试点检测需要的时间可能不同。本文研究了如何选取一些测试点 ,使得这些测试点可以检测所有故障 ,而所需时间最少的问题。我们将其转化成整数规划问题 ,并给出一个求解算法 .最后给出一个实例对算法加以说明。  相似文献   
197.
The well‐known generalized assignment problem (GAP) involves the identification of a minimum‐cost assignment of tasks to agents when each agent is constrained by a resource in limited supply. The multi‐resource generalized assignment problem (MRGAP) is the generalization of the GAP in which there are a number of different potentially constraining resources associated with each agent. This paper explores heuristic procedures for the MRGAP. We first define a three‐phase heuristic which seeks to construct a feasible solution to MRGAP and then systematically attempts to improve the solution. We then propose a modification of the heuristic for the MRGAP defined previously by Gavish and Pirkul. The third procedure is a hybrid heuristic that combines the first two heuristics, thus capturing their relative strengths. We discuss extensive computational experience with the heuristics. The hybrid procedure is seen to be extremely effective in solving MRGAPs, generating feasible solutions to more than 99% of the test problems and consistently producing near‐optimal solutions. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 468–483, 2001  相似文献   
198.
We study a workforce planning and scheduling problem in which weekly tours of agents must be designed. Our motivation for this study comes from a call center application where agents serve customers in response to incoming phone calls. Similar to many other applications in the services industry, the demand for service in call centers varies significantly within a day and among days of the week. In our model, a weekly tour of an agent consists of five daily shifts and two days off, where daily shifts within a tour may be different from each other. The starting times of any two consecutive shifts, however, may not differ by more than a specified bound. Furthermore, a tour must also satisfy constraints regarding the days off, for example, it may be required that one of the days off is on a weekend day. The objective is to determine a collection of weekly tours that satisfy the demand for agents' services, while minimizing the total labor cost of the workforce. We describe an integer programming model where a weekly tour is obtained by combining seven daily shift scheduling models and days‐off constraints in a network flow framework. The model is flexible and can accommodate different daily models with varying levels of detail. It readily handles different days‐off rules and constraints regarding start time differentials in consecutive days. Computational results are also presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 607–624, 2001.  相似文献   
199.
We present a stochastic optimization model for planning capacity expansion under capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although the methodology can be used in other applications. The goals of the model are deciding which energy types must be installed, and when. Another goal is providing an initial generation plan for short periods of the planning horizon that might be adequately modified in real time assuming penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is a random vector. The cost of the risk associated with decisions that may need some tuning in the future is included in the objective function. The proposed scheme to solve the nonlinear stochastic optimization model is Generalized Benders' decomposition. We also exploit the Benders' subproblem structure to solve it efficiently. Computational results for moderate‐size problems are presented along with comparison to a general‐purpose nonlinear optimization package. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:662–683, 2001  相似文献   
200.
A mathematical model of portfolio optimization is usually represented as a bicriteria optimization problem where a reasonable tradeoff between expected rate of return and risk is sought. In a classical Markowitz model, the risk is measured by a variance, thus resulting in a quadratic programming model. As an alternative, the MAD model was developed by Konno and Yamazaki, where risk is measured by (mean) absolute deviation instead of a variance. The MAD model is computationally attractive, since it is easily transformed into a linear programming problem. An extension to the MAD model proposed in this paper allows us to measure risk using downside deviations, with the ability to penalize larger downside deviations. Hence, it provides for better modeling of risk averse preferences. The resulting m‐MAD model generates efficient solutions with respect to second degree stochastic dominance, while at the same time preserving the simplicity and linearity of the original MAD model. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 185–200, 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号