首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   92篇
  国内免费   4篇
  2022年   1篇
  2021年   2篇
  2019年   12篇
  2018年   6篇
  2017年   17篇
  2016年   22篇
  2015年   17篇
  2014年   18篇
  2013年   70篇
  2012年   14篇
  2011年   26篇
  2010年   23篇
  2009年   21篇
  2008年   22篇
  2007年   32篇
  2006年   23篇
  2005年   16篇
  2004年   20篇
  2003年   13篇
  2002年   23篇
  2001年   21篇
  2000年   15篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
141.
Since a system and its components usually deteriorate with age, preventive maintenance (PM) is often performed to restore or keep the function of a system in a good state. Furthermore, PM is capable of improving the health condition of the system and thus prolongs its effective age. There has been a vast amount of research to find optimal PM policies for deteriorating repairable systems. However, such decisions involve numerous uncertainties and the analyses are typically difficult to perform because of the scarcity of data. It is therefore important to make use of all information in an efficient way. In this article, a Bayesian decision model is developed to determine the optimal number of PM actions for systems which are maintained according to a periodic PM policy. A non‐homogeneous Poisson process with a power law failure intensity is used to describe the deteriorating behavior of the repairable system. It is assumed that the status of the system after a PM is somewhere between as good as new for a perfect repair and as good as old for a minimal repair, and for failures between two preventive maintenances, the system undergoes minimal repairs. Finally, a numerical example is given and the results of the proposed approach are discussed after performing sensitivity analysis. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
142.
In this article, we analyze a discrete‐time queue that is motivated from studying hospital inpatient flow management, where the customer count process captures the midnight inpatient census. The stationary distribution of the customer count has no explicit form and is difficult to compute in certain parameter regimes. Using the Stein's method framework, we identify a continuous random variable to approximate the steady‐state customer count. The continuous random variable corresponds to the stationary distribution of a diffusion process with state‐dependent diffusion coefficients. We characterize the error bounds of this approximation under a variety of system load conditions—from lightly loaded to heavily loaded. We also identify the critical role that the service rate plays in the convergence rate of the error bounds. We perform extensive numerical experiments to support the theoretical findings and to demonstrate the approximation quality. In particular, we show that our approximation performs better than those based on constant diffusion coefficients when the number of servers is small, which is relevant to decision making in a single hospital ward.  相似文献   
143.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   
144.
This article proposes an approximation for the blocking probability in a many‐server loss model with a non‐Poisson time‐varying arrival process and flexible staffing (number of servers) and shows that it can be used to set staffing levels to stabilize the time‐varying blocking probability at a target level. Because the blocking probabilities necessarily change dramatically after each staffing change, we randomize the time of each staffing change about the planned time. We apply simulation to show that (i) the blocking probabilities cannot be stabilized without some form of randomization, (ii) the new staffing algorithm with randomiation can stabilize blocking probabilities at target levels and (iii) the required staffing can be quite different when the Poisson assumption is dropped. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 177–202, 2017  相似文献   
145.
This paper considers the statistical analysis of masked data in a series system, where the components are assumed to have Marshall‐Olkin Weibull distribution. Based on type‐I progressive hybrid censored and masked data, we derive the maximum likelihood estimates, approximate confidence intervals, and bootstrap confidence intervals of unknown parameters. As the maximum likelihood estimate does not exist for small sample size, Gibbs sampling is used to obtain the Bayesian estimates and Monte Carlo method is employed to construct the credible intervals based on Jefferys prior with partial information. Numerical simulations are performed to compare the performances of the proposed methods and one data set is analyzed.  相似文献   
146.
This article compares the profitability of two pervasively adopted return policies—money‐back guarantee and hassle‐free policies. In our model, a seller sells to consumers with heterogeneous valuations and hassle costs. Products are subject to quality risk, and product misfit can only be observed post‐purchase. While the hassle‐free policy is cost advantageous from the seller's viewpoint, a money‐back guarantee allows the seller to fine‐tune the consumer hassle on returning the product. Thus, when the two return policies lead to the same consumer behaviors, the hassle‐free policy dominates. Conversely, a money‐back guarantee can be more profitable even if on average, high‐valuation consumers experience a lower hassle cost than the low‐valuation ones. The optimal hassle cost can be higher when product quality gets improved; thus, it is not necessarily a perfect proxy or signal of the seller's quality. We further allow the seller to adopt a mixture of these policies, and identify the concrete operating regimes within which these return policies are optimal among more flexible policies. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 403–417, 2014  相似文献   
147.
We consider the problem of assessing the value of demand sharing in a multistage supply chain in which the retailer observes stationary autoregressive moving average demand with Gaussian white noise (shocks). Similar to previous research, we assume each supply chain player constructs its best linear forecast of the leadtime demand and uses it to determine the order quantity via a periodic review myopic order‐up‐to policy. We demonstrate how a typical supply chain player can determine the extent of its available information in the presence of demand sharing by studying the properties of the moving average polynomials of adjacent supply chain players. The retailer's demand is driven by the random shocks appearing in the autoregressive moving average representation for its demand. Under the assumptions we will make in this article, to the retailer, knowing the shock information is equivalent to knowing the demand process (assuming that the model parameters are also known). Thus (in the event of sharing) the retailer's demand sequence and shock sequence would contain the same information to the retailer's supplier. We will show that, once we consider the dynamics of demand propagation further up the chain, it may be that a player's demand and shock sequences will contain different levels of information for an upstream player. Hence, we study how a player can determine its available information under demand sharing, and use this information to forecast leadtime demand. We characterize the value of demand sharing for a typical supply chain player. Furthermore, we show conditions under which (i) it is equivalent to no sharing, (ii) it is equivalent to full information shock sharing, and (iii) it is intermediate in value to the two previously described arrangements. Although it follows from existing literature that demand sharing is equivalent to full information shock sharing between a retailer and supplier, we demonstrate and characterize when this result does not generalize to upstream supply chain players. We then show that demand propagates through a supply chain where any player may share nothing, its demand, or its full information shocks (FIS) with an adjacent upstream player as quasi‐ARMA in—quasi‐ARMA out. We also provide a convenient form for the propagation of demand in a supply chain that will lend itself to future research applications. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 515–531, 2014  相似文献   
148.
In this article, we address a stochastic generalized assignment machine scheduling problem in which the processing times of jobs are assumed to be random variables. We develop a branch‐and‐price (B&P) approach for solving this problem wherein the pricing problem is separable with respect to each machine, and has the structure of a multidimensional knapsack problem. In addition, we explore two other extensions of this method—one that utilizes a dual‐stabilization technique and another that incorporates an advanced‐start procedure to obtain an initial feasible solution. We compare the performance of these methods with that of the branch‐and‐cut (B&C) method within CPLEX. Our results show that all B&P‐based approaches perform better than the B&C method, with the best performance obtained for the B&P procedure that includes both the extensions aforementioned. We also utilize a Monte Carlo method within the B&P scheme, which affords the use of a small subset of scenarios at a time to estimate the “true” optimal objective function value. Our experimental investigation reveals that this approach readily yields solutions lying within 5% of optimality, while providing more than a 10‐fold savings in CPU times in comparison with the best of the other proposed B&P procedures. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 131–143, 2014  相似文献   
149.
This paper tests the relationship between military expenditure and economic growth by including the impact of the share of military and civilian components of government expenditure in an economic growth model with endogenous technology. In this framework, we empirically consider the hypothesis of a non‐linear effect of military expenditure on economic growth. Differences between the costs and benefits of the defence sector has traditionally explained the non‐linear relationship suggesting that shocks to insecurity may also be a source of non‐linearity as they determine a re‐allocative effect within government expenditure. While parametric partial correlations are in line with empirical findings, the robustness of estimations is tested by using a non‐parametric approach. The negative relationship between military expenditure and growth in countries with high levels of military burden predicted by theory becomes significant only after including a proxy for re‐allocative effects in the growth equation.  相似文献   
150.
Famous cultural monuments are often regarded as unique icons, making them an attractive target for terrorists. Despite huge military and police outlays, terrorist attacks on important monuments can hardly be avoided. We argue that an effective strategy to discourage terrorist attacks on iconic monuments is for a government to show a firm commitment to swift reconstruction. Using a simple game‐theoretic model, we demonstrate how a credible claim to rebuild any destroyed cultural monument discourages terrorist attacks by altering the terrorists' expectations and by increasing the government's reputation costs if they fail to rebuild.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号