首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   93篇
  国内免费   6篇
  529篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   15篇
  2018年   6篇
  2017年   19篇
  2016年   26篇
  2015年   21篇
  2014年   25篇
  2013年   76篇
  2012年   23篇
  2011年   28篇
  2010年   27篇
  2009年   29篇
  2008年   25篇
  2007年   34篇
  2006年   26篇
  2005年   18篇
  2004年   21篇
  2003年   16篇
  2002年   31篇
  2001年   22篇
  2000年   18篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
21.
谈慢班英语教学   总被引:4,自引:0,他引:4  
本文从教与学这两个方面入手,分析了慢班教学中存在的问题,并就如何解决这些问题进行了探讨,指出慢班教学具有特殊性,搞好慢班教学非爱心、耐心、细心、决心加经验与技巧所不能.  相似文献   
22.
Vendor‐managed revenue‐sharing arrangements are common in the newspaper and other industries. Under such arrangements, the supplier decides on the level of inventory while the retailer effectively operates under consignment, sharing the sales revenue with his supplier. We consider the case where the supplier is unable to predict demand, and must base her decisions on the retailer‐supplied probabilistic forecast for demand. We show that the retailer's best choice of a distribution to report to his supplier will not be the true demand distribution, but instead will be a degenerate distribution that surprisingly induces the supplier to provide the system‐optimal inventory quantity. (To maintain credibility, the retailer's reports of daily sales must then be consistent with his supplied forecast.) This result is robust under nonlinear production costs and nonlinear revenue‐sharing. However, if the retailer does not know the supplier's production cost, the forecast “improves” and could even be truthful. That, however, causes the supplier's order quantity to be suboptimal for the overall system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
23.
In many practical multiserver queueing systems, servers not only serve randomly arriving customers but also work on the secondary jobs with infinite backlog during their idle time. In this paper, we propose a c‐server model with a two‐threshold policy, denoted by (e d), to evaluate the performance of this class of systems. With such a policy, when the number of idle servers has reached d (<c), then e (<d) idle agents will process secondary jobs. These e servers keep working on the secondary jobs until they find waiting customers exist in the system at a secondary job completion instant. Using the matrix analytic method, we obtain the stationary performance measures for evaluating different (e, d) policies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   
24.
We study a pull‐type, flexible, multi‐product, and multi‐stage production/inventory system with decentralized two‐card kanban control policies. Each stage involves a processor and two buffers with finite target levels. Production stages, arranged in series, can process several product types one at a time. Transportation of semi‐finished parts from one stage to another is performed in fixed lot sizes. The exact analysis is mathematically intractable even for smaller systems. We present a robust approximation algorithm to model two‐card kanban systems with batch transfers under arbitrary complexity. The algorithm uses phase‐type modeling to find effective processing times and busy period analysis to identify delays among product types in resource contention. Our algorithm reduces the effort required for estimating performance measures by a considerable margin and resolves the state–space explosion problem of analytical approaches. Using this analytical tool, we present new findings for a better understanding of some tactical and operational issues. We show that flow of material in small procurement sizes smoothes flow of information within the system, but also necessitates more frequent shipments between stages, raising the risk of late delivery. Balancing the risk of information delays vis‐à‐vis shipment delays is critical for the success of two‐card kanban systems. Although product variety causes time wasted in setup operations, it also facilitates relatively short production cycles enabling processors to switch from one product type to another more rapidly. The latter point is crucial especially in high‐demand environments. Increasing production line size prevents quick response to customer demand, but it may improve system performance if the vendor lead‐time is long or subject to high variation. Finally, variability in transportation and processing times causes the most damage if it arises at stages closer to the customer. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
25.
This paper proposes a kurtosis correction (KC) method for constructing the X? and R control charts for symmetrical long‐tailed (leptokurtic) distributions. The control charts are similar to the Shewhart control charts and are very easy to use. The control limits are derived based on the degree of kurtosis estimated from the actual (subgroup) data. It is assumed that the underlying quality characteristic is symmetrically distributed and no other distributional and/or parameter assumptions are made. The control chart constants are tabulated and the performance of these charts is compared with that of the Shewhart control charts. For the case of the logistic distribution, the exact control limits are derived and are compared with the KC method and the Shewhart method. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
26.
We consider the infinite horizon serial inventory system with both average cost and discounted cost criteria. The optimal echelon base‐stock levels are obtained in terms of only probability distributions of leadtime demands. This analysis yields a novel approach for developing bounds and heuristics for optimal inventory control polices. In addition to deriving the known bounds in literature, we develop several new upper bounds for both average cost and discounted cost models. Numerical studies show that the bounds and heuristic are very close to optimal.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
27.
The opportunistic maintenance of a k‐out‐of‐n:G system with imperfect preventive maintenance (PM) is studied in this paper, where partial failure is allowed. In many applications, the optimal maintenance actions for one component often depend on the states of the other components and system reliability requirements. Two new (τ, T) opportunistic maintenance models with the consideration of reliability requirements are proposed. In these two models, only minimal repairs are performed on failed components before time τ and the corrective maintenance (CM) of all failed components are combined with PM of all functioning but deteriorated components after τ; if the system survives to time T without perfect maintenance, it will be subject to PM at time T. Considering maintenance time, asymptotic system cost rate and availability are derived. The results obtained generalize and unify some previous research in this area. Application to aircraft engine maintenance is presented. © 2000 John Wiley & Sons;, Inc. Naval Research Logistics 47: 223–239, 2000  相似文献   
28.
In this paper, two different kinds of (N, T)‐policies for an M/M/m queueing system are studied. The system operates only intermittently and is shut down when no customers are present any more. A fixed setup cost of K > 0 is incurred each time the system is reopened. Also, a holding cost of h > 0 per unit time is incurred for each customer present. The two (N, T)‐policies studied for this queueing system with cost structures are as follows: (1) The system is reactivated as soon as N customers are present or the waiting time of the leading customer reaches a predefined time T, and (2) the system is reactivated as soon as N customers are present or the time units after the end of the last busy period reaches a predefined time T. The equations satisfied by the optimal policy (N*, T*) for minimizing the long‐run average cost per unit time in both cases are obtained. Particularly, we obtain the explicit optimal joint policy (N*, T*) and optimal objective value for the case of a single server, the explicit optimal policy N* and optimal objective value for the case of multiple servers when only predefined customers number N is measured, and the explicit optimal policy T* and optimal objective value for the case of multiple servers when only predefined time units T is measured, respectively. These results partly extend (1) the classic N or T policy to a more practical (N, T)‐policy and (2) the conclusions obtained for single server system to a system consisting of m (m ≥ 1) servers. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 240–258, 2000  相似文献   
29.
In this short note we study a two‐machine flowshop scheduling problem with the additional no‐idle feasibility constraint and the total completion time criterion function. We show that one of the few papers which deal with this special problem contains incorrect claims and suggest a way how these claims can be rectified. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47:353–358, 2000  相似文献   
30.
This paper develops and applies a nonparametric bootstrap methodology for setting inventory reorder points and a simple inequality for identifying existing reorder points that are unreasonably high. We demonstrate that an empirically based bootstrap method is both feasible and calculable for large inventories by applying it to the 1st Marine Expeditionary Force General Account, an inventory consisting of $20–30 million of stock for 10–20,000 different types of items. Further, we show that the bootstrap methodology works significantly better than the existing methodology based on mean days of supply. In fact, we demonstrate performance equivalent to the existing system with a reduced inventory at one‐half to one‐third the cost; conversely, we demonstrate significant improvement in fill rates and other inventory performance measures for an inventory of the same cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 459–478, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号