首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   151篇
  国内免费   14篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   20篇
  2018年   9篇
  2017年   33篇
  2016年   35篇
  2015年   25篇
  2014年   39篇
  2013年   86篇
  2012年   27篇
  2011年   41篇
  2010年   35篇
  2009年   43篇
  2008年   44篇
  2007年   49篇
  2006年   34篇
  2005年   32篇
  2004年   36篇
  2003年   20篇
  2002年   34篇
  2001年   31篇
  2000年   29篇
  1999年   14篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有787条查询结果,搜索用时 15 毫秒
191.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   
192.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
193.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
194.
In this article we address an important class of supply contracts called the Rolling Horizon Flexibility (RHF) contracts. Under such a contract, at the beginning of the horizon a buyer has to commit requirements for components for each period into the future. Usually, a supplier provides limited flexibility to the buyer to adjust the current order and future commitments in a rolling horizon manner. We present a general model for a buyer's procurement decision under RHF contracts. We propose two heuristics and derive a lower bound. Numerically, we demonstrate the effectiveness of the heuristics for both stationary and non‐stationary demands. We show that the heuristics are easy to compute, and hence, amenable to practical implementation. We also propose two measures for the order process that allow us to (a) evaluate the effectiveness of RHF contracts in restricting the variability in the orders, and (b) measure the accuracy of advance information vis‐a‐vis the actual orders. Numerically we demonstrate that the order process variability decreases significantly as flexibility decreases without a dramatic increase in expected costs. Our numerical studies provide several other managerial insights for the buyer; for example, we provide insights into how much flexibility is sufficient, the value of additional flexibility, the effect of flexibility on customer satisfaction (as measured by fill rate), etc. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
195.
Since a system and its components usually deteriorate with age, preventive maintenance (PM) is often performed to restore or keep the function of a system in a good state. Furthermore, PM is capable of improving the health condition of the system and thus prolongs its effective age. There has been a vast amount of research to find optimal PM policies for deteriorating repairable systems. However, such decisions involve numerous uncertainties and the analyses are typically difficult to perform because of the scarcity of data. It is therefore important to make use of all information in an efficient way. In this article, a Bayesian decision model is developed to determine the optimal number of PM actions for systems which are maintained according to a periodic PM policy. A non‐homogeneous Poisson process with a power law failure intensity is used to describe the deteriorating behavior of the repairable system. It is assumed that the status of the system after a PM is somewhere between as good as new for a perfect repair and as good as old for a minimal repair, and for failures between two preventive maintenances, the system undergoes minimal repairs. Finally, a numerical example is given and the results of the proposed approach are discussed after performing sensitivity analysis. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
196.
设计了一种新的MIMO-OFDM系统Turbo接收机中的信道估计器.考虑了信道估计误差对编码比特外信息计算的影响,利用软球形译码器的搜索列表和解码器反馈的先验信息对传统EM信道估计中的软信息近似处理进行了修正,获得了更为准确的软符号统计信息用于信道估计,提出了考虑软符号互相关性的Bayesian EM(BEM)信道估计算法.仿真结果表明,新算法较传统EM算法具有更低的误码率和更小的估计均方误差值.  相似文献   
197.
In this paper we present a componentwise delay measure for estimating and improving the expected delays experienced by customers in a multi‐component inventory/assembly system. We show that this measure is easily computed. Further, in an environment where the performance of each of the item delays could be improved with investment, we present a solution that aims to minimize this measure and, in effect, minimizes the average waiting time experienced by customers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   
198.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   
199.
We consider the scheduling of large‐scale projects to maximize the project net present value given temporal and resource constraints. The net present value objective emphasizes the financial aspects of project management. Temporal constraints between the start times of activities make it possible to handle practical problem assumptions. Scarce resources are an expression of rising cost. Since optimization techniques are not expedient to solve such problems and most heuristic methods known from literature cannot deal with general temporal constraints, we propose a new bidirectional priority‐rule based method. Scheduling activities with positive cash flows as early and activities with negative cash flows as late as possible results in a method which is completed by unscheduling techniques to cope with scarce resources. In a computational experiment, we compare the well‐known serial generation scheme where all activities are scheduled as early as possible with the proposed bidirectional approach. On the basis of a comprehensive data set known from literature containing instances with up to 1002 activities, the efficiency of the new approach is demonstrated. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
200.
In the flow shop delivery time problem, a set of jobs has to be processed on m machines. Every machine has to process each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines so as to minimize maximum delivery completion time over all the jobs, where the delivery completion time of a job is the sum of its completion time, and the delivery time associated with that job. In this paper, we prove the asymptotic optimality of the Longest Delivery Time algorithm for the static version of this problem, and the Longest Delivery Time among Available Jobs (LDTA) algorithm for the dynamic version of this problem. In addition, we present the result of computational testing of the effectiveness of these algorithms. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号