首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   622篇
  免费   151篇
  国内免费   14篇
  2023年   2篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   20篇
  2018年   9篇
  2017年   33篇
  2016年   35篇
  2015年   25篇
  2014年   39篇
  2013年   86篇
  2012年   27篇
  2011年   41篇
  2010年   35篇
  2009年   43篇
  2008年   44篇
  2007年   49篇
  2006年   34篇
  2005年   32篇
  2004年   36篇
  2003年   20篇
  2002年   34篇
  2001年   31篇
  2000年   29篇
  1999年   14篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有787条查询结果,搜索用时 31 毫秒
531.
We study tail hazard rate ordering properties of coherent systems using the representation of the distribution of a coherent system as a mixture of the distributions of the series systems obtained from its path sets. Also some ordering properties are obtained for order statistics which, in this context, represent the lifetimes of k‐out‐of‐n systems. We pay special attention to systems with components satisfying the proportional hazard rate model or with exponential, Weibull and Pareto type II distributions. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
532.
Models for integrated production and demand planning decisions can serve to improve a producer's ability to effectively match demand requirements with production capabilities. In contexts with price‐sensitive demands, economies of scale in production, and multiple capacity options, such integrated planning problems can quickly become complex. To address these complexities, this paper provides profit‐maximizing production planning models for determining optimal demand and internal production capacity levels under price‐sensitive deterministic demands, with subcontracting and overtime options. The models determine a producer's optimal price, production, inventory, subcontracting, overtime, and internal capacity levels, while accounting for production economies of scale and capacity costs through concave cost functions. We use polyhedral properties and dynamic programming techniques to provide polynomial‐time solution approaches for obtaining an optimal solution for this class of problems when the internal capacity level is time‐invariant. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
533.
In this paper we consider a transportation problem where several products have to be shipped from an origin to a destination by means of vehicles with given capacity. Each product is made available at the origin and consumed at the destination at the same constant rate. The time between consecutive shipments must be greater than a given minimum time. All demand needs to be satisfied on time and backlogging is not allowed. The problem is to decide when to make the shipments and how to load the vehicles with the objective of minimizing the long run average of the transportation and the inventory costs at the origin and at the destination over an infinite horizon. We consider two classes of practical shipping policies, the zero inventory ordering (ZIO) policies and the frequency‐based periodic shipping (FBPS) policies. We show that, in the worst‐case, the Best ZIO policy has a performance ratio of . A better performance guarantee of is shown for the best possible FBPS policy. The performance guarantees are tight. Finally, combining the Best ZIO and the Best FBPS policies, a policy that guarantees a performance is obtained. Computational results show that this policy gives an average percent optimality gap on all the tested instances of <1%. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
534.
We consider how a merger between two naturally differentiated dealers affects their interactions with a common supplier and identify conditions under which the merger can increase or decrease the combined net worth of the two firms. Among other things, we find that the attractiveness of merging depends upon the extent to which end demand can be stimulated by either an upstream supplier or the dealers. Specifically, the greater the supplier's ability to invest in stimulating end demand, the more likely it is that the naturally differentiated firms will be better off operating independently than merging. On the other hand, if the greatest opportunities for stimulating demand are through the service that is provided by the dealers, then merging their operations will be more attractive. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
535.
In some supply chains serious disruptions are system wide. This happens during periods of severe weather, as when storms cause shuttle tankers serving oil platforms in the North Sea to stop movements of crude oil, barges are frozen in the Mississippi, or all airplanes are grounded after a blizzard. Other notable instances of system‐wide disruption happened after the attack on the World Trade Center when all aircraft were grounded and the natural gas and crude‐oil pipelines were tangled by hurricanes in 2005. We model a situation where shutting down supply facilities is very difficult and expensive because of excessive inventory buildup from an inability to move out the production. We present a planning model that balances the cost of spare capacity versus shutting down production when planning for disruptions. The model uses an assignment model embedded in a simulation. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
536.
本文就部门预算的基本原则、编制方法进行了深入的论述,对部门预算中存在的问题做了深入的分析,并就这些问题的解决做了系统的论述。  相似文献   
537.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
538.
We study the problem of minimizing the makespan in no‐wait two‐machine open shops producing multiple products using lot streaming. In no‐wait open shop scheduling, sublot sizes are necessarily consistent; i.e., they remain the same over all machines. This intractable problem requires finding sublot sizes, a product sequence for each machine, and a machine sequence for each product. We develop a dynamic programming algorithm to generate all the dominant schedule profiles for each product that are required to formulate the open shop problem as a generalized traveling salesman problem. This problem is equivalent to a classical traveling salesman problem with a pseudopolynomial number of cities. We develop and test a computationally efficient heuristic for the open shop problem. Our results indicate that solutions can quickly be found for two machine open shops with up to 50 products. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
539.
A Markov modulated shock models is studied in this paper. In this model, both the interarrival time and the magnitude of the shock are determined by a Markov process. The system fails whenever a shock magnitude exceeds a pre‐specified level η. Nonexponential bounds of the reliability are given when the interarrival time has heavy‐tailed distribution. The exponential decay of the reliability function and the asymptotic failure rate are also considered for the light‐tailed case. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
540.
We study joint preventive maintenance (PM) and production policies for an unreliable production‐inventory system in which maintenance/repair times are non‐negligible and stochastic. A joint policy decides (a) whether or not to perform PM and (b) if PM is not performed, then how much to produce. We consider a discrete‐time system, formulating the problem as a Markov decision process (MDP) model. The focus of the work is on the structural properties of optimal joint policies, given the system state comprised of the system's age and the inventory level. Although our analysis indicates that the structure of optimal joint policies is very complex in general, we are able to characterize several properties regarding PM and production, including optimal production/maintenance actions under backlogging and high inventory levels, and conditions under which the PM portion of the joint policy has a control‐limit structure. In further special cases, such as when PM set‐up costs are negligible compared to PM times, we are able to establish some additional structural properties. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号