首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   11篇
  国内免费   2篇
  801篇
  2025年   2篇
  2024年   4篇
  2023年   7篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   21篇
  2018年   9篇
  2017年   33篇
  2016年   35篇
  2015年   25篇
  2014年   39篇
  2013年   86篇
  2012年   27篇
  2011年   41篇
  2010年   35篇
  2009年   43篇
  2008年   44篇
  2007年   49篇
  2006年   34篇
  2005年   32篇
  2004年   36篇
  2003年   20篇
  2002年   34篇
  2001年   31篇
  2000年   29篇
  1999年   14篇
  1998年   9篇
  1997年   11篇
  1996年   8篇
  1995年   4篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
排序方式: 共有801条查询结果,搜索用时 0 毫秒
671.
    
In this article, we study a biobjective economic lot‐sizing problem with applications, among others, in green logistics. The first objective aims to minimize the total lot‐sizing costs including production and inventory holding costs, whereas the second one minimizes the maximum production and inventory block expenditure. We derive (almost) tight complexity results for the Pareto efficient outcome problem under nonspeculative lot‐sizing costs. First, we identify nontrivial problem classes for which this problem is polynomially solvable. Second, if we relax any of the parameter assumptions, we show that (except for one case) finding a single Pareto efficient outcome is an ‐hard task in general. Finally, we shed some light on the task of describing the Pareto frontier. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 386–402, 2014  相似文献   
672.
    
We study the problem of recovering a production plan after a disruption, where the disruption may be caused by incidents such as power failure, market change, machine breakdown, supply shortage, worker no‐show, and others. The new recovery plan we seek after has to not only suit the changed environment brought about by the disruption, but also be close to the initial plan so as not to cause too much customer unsatisfaction or inconvenience for current‐stage and downstream operations. For the general‐cost case, we propose a dynamic programming method for the problem. For the convex‐cost case, a general problem which involves both cost and demand disruptions can be solved by considering the cost disruption first and then the demand disruption. We find that a pure demand disruption is easy to handle; and for a pure cost disruption, we propose a greedy method which is provably efficient. Our computational studies also reveal insights that will be helpful to managing disruptions in production planning. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
673.
为了尽快分析出未知水雷障碍参数,根据水雷战的特点,提出了建立未知水雷障碍参数分析专家系统的观点,对专家系统的设计方法进行了一定的探讨,并针对专家系统建立中的\"瓶颈\"问题,提出了基于Vague集插值近似推理的专家系统知识自动获取方法,在介绍推理过程的基础上给出了算例.从推理的结果来看,该方法具有较高的可信度,从而为专家系统的研制提供了一定的方法支持.  相似文献   
674.
图像质量的客观评价与人类主观感知之间一定存在必然的联系,并且这些客观评价方法应该取代主观评价。也就是说,这些客观评价方法允许在不征求任何用户意见的基础上,去评价一个给定系统的性能。本文研究了在变化的压缩体制下实施在若干图像上的一套客观测量和主观评价之间的相互关系,并给出了初步的分析结果。  相似文献   
675.
    
Unit‐load warehouses store and retrieve unit‐loads, typically pallets. When storage and retrieval operations are not coordinated, travel is from a pickup and deposit (P&D) point to a pallet location and back again. In some facilities, workers interleave storage and retrieval operations to form a dual‐command cycle. Two new aisle designs proposed by Gue and Meller (“Improving the unit‐load warehouse.” In Progress in Material Handling Research: 2006. Material Handling Industry of America, Charlotte, NC, 2006) use diagonal aisles to reduce the travel distance to a single pallet location by approximately 10 and 20[percnt] for the two designs, respectively. We develop analytical expressions for travel between pallet locations for one of these—the fishbone design. We then compare fishbone warehouses that have been optimized for dual‐command to traditional warehouses that have been optimized in the same manner, and show that an optimal fishbone design reduces dual‐command travel by 10–15%. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 54: 389–403, 2009  相似文献   
676.
    
A natural extension of the bucket brigade model of manufacturing is capable of chaotic behavior in which the product intercompletion times are, in effect, random, even though the model is completely deterministic. This is, we believe, the first proven instance of chaos in discrete manufacturing. Chaotic behavior represents a new challenge to the traditional tools of engineering management to reduce variability in production lines. Fortunately, if configured correctly, a bucket brigade assembly line can avoid such pathologies. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
677.
    
We consider the joint pricing and inventory‐control problem for a retailer who orders, stocks, and sells two products. Cross‐price effects exist between the two products, which means that the demand of each product depends on the prices of both products. We derive the optimal pricing and inventory‐control policy and show that this policy differs from the base‐stock list‐price policy, which is optimal for the one‐product problem. We find that the retailer can significantly improve profits by managing the two products jointly as opposed to independently, especially when the cross‐price demand elasticity is high. We also find that the retailer can considerably improve profits by using dynamic pricing as opposed to static pricing, especially when the demand is nonstationary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
678.
    
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
679.
    
We give necessary and sufficient conditions based on signatures to obtain distribution‐free stochastic ordering properties for coherent systems with exchangeable components. Specifically, we consider the stochastic, the hazard (failure) rate, the reversed hazard rate, and the likelihood ratio orders. We apply these results to obtain stochastic ordering properties for all the coherent systems with five or less exchangeable components. Our results extend some preceding results. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
680.
    
In many manufacturing environments, equipment condition has a significant impact on product quality, or yield. This paper presents a semi‐Markov decision process model of a single‐stage production system with multiple products and multiple maintenance actions. The model simultaneously determines maintenance and production schedules, accounting for the fact that equipment condition affects the yield of each product differently. It extends earlier work by allowing the expected time between decision epochs to vary by both action and machine state, by allowing multiple maintenance actions, and by treating the outcome of maintenance as less than certain. Sufficient conditions are developed that ensure the monotonicity of both the optimal production and maintenance actions. While the maintenance conditions closely resemble previously studied conditions for this type of problem, the production conditions represent a significant departure from earlier results. The simultaneous solution method is compared to an approach commonly used in industry, where the maintenance and production problems are treated independently. Solving more than one thousand test problems confirms that the combination of both features of the model—accounting for product differences and solving the problems simultaneously—has a significant impact on performance. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号