首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   136篇
  国内免费   8篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   10篇
  2019年   13篇
  2018年   8篇
  2017年   21篇
  2016年   29篇
  2015年   25篇
  2014年   26篇
  2013年   78篇
  2012年   28篇
  2011年   36篇
  2010年   26篇
  2009年   30篇
  2008年   29篇
  2007年   40篇
  2006年   33篇
  2005年   28篇
  2004年   27篇
  2003年   17篇
  2002年   17篇
  2001年   15篇
  2000年   20篇
  1999年   8篇
  1998年   10篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有588条查询结果,搜索用时 31 毫秒
161.
MacGregor and Harris (J Quality Technol 25 (1993) 106–118) proposed the exponentially weighted mean squared deviation (EWMS) and the exponentially weighted moving variance (EWMV) charts as ways of monitoring process variability. These two charts are particularly useful for individual observations where no estimate of variability is available from replicates. However, the control charts derived by using the approximate distributions of the EWMS and EWMV statistics are difficult to interpret in terms of the average run length (ARL). Furthermore, both control charting schemes are biased procedures. In this article, we propose two new control charts by applying a normal approximation to the distributions of the logarithms of the weighted sum of chi squared random variables, which are respectively functions of the EWMS and EWMV statistics. These new control charts are easy to interpret in terms of the ARL. On the basis of the simulation studies, we demonstrate that the proposed charts are superior to the EWMS and EWMV charts and they both are nearly unbiased for the commonly used smoothing constants. We also compare the performance of the proposed charts with that of the change point (CP) CUSUM chart of Acosta‐Mejia (1995). The design of the proposed control charts is discussed. An example is also given to illustrate the applicability of the proposed control charts. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
162.
In the Swapping Problem (SP), we are given a complete graph, a set of object types, and a vehicle of unit capacity. An initial state specifies the object type currently located at each vertex (at most one type per vertex). A final state describes where these object types must be repositioned. In general, there exist several identical objects for a given object type, yielding multiple possible destinations for each object. The SP consists of finding a shortest vehicle route starting and ending at an arbitrary vertex, in such a way that each object is repositioned in its final state. This article exhibits some structural properties of optimal solutions and proposes a branch‐and‐cut algorithm based on a 0‐1 formulation of the problem. Computational results on random instances containing up to 200 vertices and eight object types are reported. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
163.
战时维修机构承担的维修任务比较繁重,合理、科学地安排维修任务可以有效地提高作战部队的战斗力.对此,分析了战时维修任务调度的特点,建立了基于最大保障时间的维修任务静态、动态调度模型,并提出了相应的模型求解方法.利用本方法在满足作战单元最大保障时间前提下,可使得装备维修效益最大,并可以实现实时动态维修任务调度,有效地解决了一种战时维修任务调度问题.  相似文献   
164.
针对导弹在飞行过程中动力学特性大范围变化的特点,以俯仰通道为例,运用预定增益控制理论设计导弹飞行控制系统,即利用导弹空气动力学特性和导弹某些特征参数的强相关性来调整控制器参数,确保导弹在要求的飞行条件下满足稳定性和动态品质.最后通过仿真验证了所设计的控制器满足性能要求.  相似文献   
165.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
166.
We consider a system that depends on a single vital component. If this component fails, the system life will terminate. If the component is replaced before its failure then the system life may be extended; however, there are only a finite number of spare components. In addition, the lifetimes of these spare components are not necessarily identically distributed. We propose a model for scheduling component replacements so as to maximize the expected system survival. We find the counterintuitive result that when comparing components' general lifetime distributions based on stochastic orderings, not even the strongest ordering provides an a priori guarantee of the optimal sequencing of components. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
167.
Since a system and its components usually deteriorate with age, preventive maintenance (PM) is often performed to restore or keep the function of a system in a good state. Furthermore, PM is capable of improving the health condition of the system and thus prolongs its effective age. There has been a vast amount of research to find optimal PM policies for deteriorating repairable systems. However, such decisions involve numerous uncertainties and the analyses are typically difficult to perform because of the scarcity of data. It is therefore important to make use of all information in an efficient way. In this article, a Bayesian decision model is developed to determine the optimal number of PM actions for systems which are maintained according to a periodic PM policy. A non‐homogeneous Poisson process with a power law failure intensity is used to describe the deteriorating behavior of the repairable system. It is assumed that the status of the system after a PM is somewhere between as good as new for a perfect repair and as good as old for a minimal repair, and for failures between two preventive maintenances, the system undergoes minimal repairs. Finally, a numerical example is given and the results of the proposed approach are discussed after performing sensitivity analysis. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
168.
SpaceWire网络混合路由机制设计   总被引:1,自引:1,他引:0       下载免费PDF全文
针对星上系统总线多元性导致的星载网络接口和协议不能标准化的发展瓶颈,基于SpaceWire总线协议,通过将静态路由(时间触发)与动态路由(事件触发)机制结合,实现了控制数据和载荷数据共用网络。静态路由完全遵循SpaceWire-D协议,在保证确定性传输的同时,通过启发式调度算法首次实现了多时间窗并行调度,并提出利用最大公约数法设计时间窗,以提高网络吞吐量;动态路由通过对随机事件和载荷数据分配优先级,实现传输路径冲突时对紧急任务的优先处理。在OPENT中搭建网络系统仿真模型,对所提出的路由机制进行了仿真。实验结果表明,静态路由时段网络吞吐量较现有调度算法有明显提高,动态路由实现了紧急事件优先传输。  相似文献   
169.
In this article, we analyze a discrete‐time queue that is motivated from studying hospital inpatient flow management, where the customer count process captures the midnight inpatient census. The stationary distribution of the customer count has no explicit form and is difficult to compute in certain parameter regimes. Using the Stein's method framework, we identify a continuous random variable to approximate the steady‐state customer count. The continuous random variable corresponds to the stationary distribution of a diffusion process with state‐dependent diffusion coefficients. We characterize the error bounds of this approximation under a variety of system load conditions—from lightly loaded to heavily loaded. We also identify the critical role that the service rate plays in the convergence rate of the error bounds. We perform extensive numerical experiments to support the theoretical findings and to demonstrate the approximation quality. In particular, we show that our approximation performs better than those based on constant diffusion coefficients when the number of servers is small, which is relevant to decision making in a single hospital ward.  相似文献   
170.
卫星数传调度模型研究   总被引:4,自引:2,他引:2       下载免费PDF全文
卫星数传调度问题是一个具有多时间窗口、多资源约束的优化问题。针对该问题,建立了卫星数传需求模型、任务模型和调度模型。在建模过程中,采用了框架模型形式,把问题中的主要约束封闭于每个数传任务中,这在降低调度模型复杂度的同时,也降低了调度算法设计难度。还提出了调度算法设计思想,并设计了一基于灵活度的调度算法。仿真表明,所建立的模型及算法对解决卫星数传调度问题是可行的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号