首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   80篇
  国内免费   6篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   9篇
  2016年   12篇
  2015年   12篇
  2014年   13篇
  2013年   12篇
  2012年   15篇
  2011年   18篇
  2010年   6篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   18篇
  2005年   18篇
  2004年   14篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   12篇
  1999年   8篇
  1998年   10篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有258条查询结果,搜索用时 62 毫秒
201.
匈牙利算法在多目标分配中的应用   总被引:9,自引:1,他引:8  
在多目标攻击决策中 ,根据 Harold提出的目标优势函数 ,分析了使所有目标机的总优势函数为指派问题 ,运用匈牙利算法对 n对 n的最优目标分配指派问题进行求解 ,并把它推广至 n对 m的多目标分配中。仿真结果表明匈牙利算法对于此类多目标分配指派问题的求解是十分有效的。  相似文献   
202.
由于各消防中队一般规模较小,对于较大规模的火灾需要多个消防队共同救护,此时若能够实现增援调度的最优化可以提高这些同时出现的火灾被全部扑灭的概率。利用多阶段动态规划对增援调度进行了研究,并分析了具体案例。通过分析得出此方法有助于改善消防资源分配状况,以实现最大程度地减小经济损失。  相似文献   
203.
针对传统造船模式下,车间作业计划与工艺设计串行工作方式的缺点,基于并行工程的原理,提出了分段作业计划与工艺设计的集成运行模式,为实现造船CAPP系统与PPC系统的集成化和并行化提供了实现的基础。针对集成模式的特点,建立了分段作业计划系统资源优化的数学模型,应用遗传算法解决了针对任意分段装配工艺方案的多资源平衡优化问题,可以得到每项作业最优的开工时间,同时能够给出多种资源的最优分布结果,满足了多工艺方案之间资源利用率的比较。最后,给出了计算实例,计算机模拟结果说明了这一方法的有效性。  相似文献   
204.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
205.
This paper considers a two-agent scheduling problem with linear resource-dependent processing times, in which each agent has a set of jobs that compete with that of the other agent for the use of a common processing machine, and each agent aims to minimize the weighted number of its tardy jobs. To meet the due date requirements of the jobs of the two agents, additional amounts of a common resource, which may be in discrete or continuous quantities, can be allocated to the processing of the jobs to compress their processing durations. The actual processing time of a job is a linear function of the amount of the resource allocated to it. The objective is to determine the optimal job sequence and resource allocation strategy so as to minimize the weighted number of tardy jobs of one agent, while keeping the weighted number of tardy jobs of the other agent, and the total resource consumption cost within their respective predetermined limits. It is shown that the problem is -hard in the ordinary sense, and there does not exist a polynomial-time approximation algorithm with performance ratio unless ; however it admits a relaxed fully polynomial time approximation scheme. A proximal bundle algorithm based on Lagrangian relaxation is also presented to solve the problem approximately. To speed up convergence and produce sharp bounds, enhancement strategies including the design of a Tabu search algorithm and integration of a Lagrangian recovery heuristic into the algorithm are devised. Extensive numerical studies are conducted to assess the effectiveness and efficiency of the proposed algorithms.  相似文献   
206.
The reoptimization procedure within the shifting bottleneck (SB) involves reevaluation of all previously scheduled toolgroup subproblems at each iteration of the SB heuristic. A real options analysis (ROA) model is developed to value the option to reoptimize in the SB heuristic, such that reoptimization only occurs when it is most likely to lead to a schedule with a lower objective function. To date, all ROA models have sought to value options financially (i.e., in terms of monetary value). The ROA model developed in this paper is completely original in that it has absolutely no monetary basis. The ROA methodologies presented are shown to greatly outperform both full and no reoptimization approaches with respect to both computation time and total weighted tardiness. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
207.
We consider the scheduling problem in a make‐to‐stock queue with two demand classes that can be differentiated based on their variability. One class experiences Poisson arrivals and the other class experiences hyperexponential renewal arrivals. We provide an exact analysis of the case where the demand class with higher variability is given non‐preemptive priority. The results are then used to compare the inventory cost performance of three scheduling disciplines, first‐come first‐serve and priority to either class. We then build on an existing dynamic scheduling heuristic to propose a modification that works well for our system. Extensions of the heuristic to more than two classes and to the case where demand state is known are also discussed. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   
208.
The quay crane scheduling problem consists of determining a sequence of unloading and loading movements for cranes assigned to a vessel in order to minimize the vessel completion time as well as the crane idle times. Idle times originate from interferences between cranes since these roll on the same rails and a minimum safety distance must be maintained between them. The productivity of container terminals is often measured in terms of the time necessary to load and unload vessels by quay cranes, which are the most important and expensive equipment used in ports. We formulate the quay crane scheduling problem as a vehicle routing problem with side constraints, including precedence relationships between vertices. For small size instances our formulation can be solved by CPLEX. For larger ones we have developed a branch‐and‐cut algorithm incorporating several families of valid inequalities, which exploit the precedence constraints between vertices. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
209.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   
210.
In this article, we consider a single machine scheduling problem, in which identical jobs are split into batches of bounded sizes. For each batch, it is allowed to produce less jobs than a given upper bound, that is, some jobs in a batch can be rejected, in which case a penalty is paid for each rejected job. The objective function is the sum of several components, including the sum of the completion times, total delivery cost, and total rejection cost. We reduce this problem to a min‐cost flow problem with a convex quadratic function and adapt Tamir's algorithm for its solution. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 217–224, 2017  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号