首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   12篇
  国内免费   1篇
  2021年   2篇
  2020年   7篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
51.
Ride-hailing platforms such as Uber, Lyft, and DiDi have achieved explosive growth and reshaped urban transportation. The theory and technologies behind these platforms have become one of the most active research topics in the fields of economics, operations research, computer science, and transportation engineering. In particular, advanced matching and dynamic pricing (DP) algorithms—the two key levers in ride-hailing—have received tremendous attention from the research community and are continuously being designed and implemented at industrial scales by ride-hailing platforms. We provide a review of matching and DP techniques in ride-hailing, and show that they are critical for providing an experience with low waiting time for both riders and drivers. Then we link the two levers together by studying a pool-matching mechanism called dynamic waiting (DW) that varies rider waiting and walking before dispatch, which is inspired by a recent carpooling product Express Pool from Uber. We show using data from Uber that by jointly optimizing DP and DW, price variability can be mitigated, while increasing capacity utilization, trip throughput, and welfare. We also highlight several key practical challenges and directions of future research from a practitioner's perspective.  相似文献   
52.
Consider a set of product variants that are differentiated by some secondary attributes such as flavor, color, or size. The retailer's problem is to jointly determine the set of variants to include in her product line (“assortment”), together with their prices and inventory levels, so as to maximize her expected profit. We model the consumer choice process using a multinomial logit choice model and consider a newsvendor type inventory setting. We derive the structure of the optimal assortment for some important special cases, including the case of horizontally differentiated items, and propose a dominance relationship for the general case that simplifies the search for an optimal assortment. We also discuss structural properties of the optimal prices. Finally, motivated by our analytical results, we propose a heuristic solution procedure, which is shown to be quite effective through a numerical study. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
53.
We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers, and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost. The problem is to find tariffs that maximize the operator's revenue. Motivated by applications in telecommunication networks, we consider a restricted version of this problem, assuming that each client utilizes at most one of the operator's tariff arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX‐hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an m approximation and a (1 + lnD)‐approximation. Here, D is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable performance guarantee, unless P = NP, and we prove the existence of an n‐approximation algorithm. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
54.
In this paper, we present a continuous time optimal control model for studying a dynamic pricing and inventory control problem for a make‐to‐stock manufacturing system. We consider a multiproduct capacitated, dynamic setting. We introduce a demand‐based model where the demand is a linear function of the price, the inventory cost is linear, the production cost is an increasing strictly convex function of the production rate, and all coefficients are time‐dependent. A key part of the model is that no backorders are allowed. We introduce and study an algorithm that computes the optimal production and pricing policy as a function of the time on a finite time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects of the dynamic nature of demand in the model. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
55.
Recent supply‐chain models that study competition among capacity‐constrained producers omit the possibility of producers strategically setting wholesale prices to create uncertainty with regards to (i.e., to obfuscate) their production capacities. To shed some light on this possibility, we study strategic obfuscation in a supply‐chain model comprised of two competing producers and a retailer, where one of the producers faces a privately‐known capacity constraint. We show that capacity obfuscation can strictly increase the obfuscating producer's profit, therefore, presenting a clear incentive for such practices. Moreover, we identify conditions under which both producers' profits increase. In effect, obfuscation enables producers to tacitly collude and charge higher wholesale prices by moderating competition between producers. The retailer, in contrast, suffers a loss in profit, raises retail prices, while overall channel profits decrease. We show that the extent of capacity obfuscation is limited by its cost and by a strategic retailer's incentive to facilitate a deterrence. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 244–267, 2014  相似文献   
56.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
57.
Although quantity discount policies have been extensively analyzed, they are not well understood when there are many different buyers. This is especially the case when buyers face price‐sensitive demand. In this paper we study a supplier's optimal quantity discount policy for a group of independent and heterogeneous retailers, when each retailer faces a demand that is a decreasing function of its retail price. The problem is analyzed as a Stackelberg game whereby the supplier acts as the leader and buyers act as followers. We show that a common quantity discount policy that is designed according to buyers' individual cost and demand structures and their rational economic behavior is able to significantly stimulate demand, improve channel efficiency, and substantially increase profits for both the supplier and buyers. Furthermore, we show that the selection of all‐units or incremental quantity discount policies has no effect on the benefits that can be obtained from quantity discounts. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
58.
Characteristically, a small subset of operational problems admit risk neutrality when contingent claims methodology were used in their analysis. That is, for the majority of manufacturing and production problems, operating cash flows are not directly linked to prices of traded assets. However, to the extent that correlations can be estimated, the methodology's applicability to a broader set of operational problems is supported. Our article addresses this issue with the objective of extending the use of contingent claims techniques to a larger set of operational problems. In broad terms, this objective entails a partial equilibrium approach to the problem of valuing uncertain cash flows. To this end, we assume risk aversion and cast our approach within Merton's intertemporal capital asset pricing model. In this context, we formulate a “generic” production valuation model that is framed as an exercise in stochastic optimal control. The model is versatile in its characterization and can easily be adapted to accommodate a wide‐ranging set of risk‐based operational problems where the underlying sources of uncertainty are not traded. To obtain results, the model is recast as a stochastic dynamic program to be solved numerically. The article addresses a number of fundamental issues in the analysis risk based decision problems in operations. First, in the approach provided, decisions are analyzed under a properly defined risk structure. Second, the process of analysis leads to suitably adjusted probability distributions through which, appropriately discounted expectations are derived. Third, through consolidating existing concepts into a standard and adaptable framework, we extend the applicability of contingent claims methodology to a broader set of operational problems. The approach is advantageous as it obviates the need for exogenously specifying utility functions or discount rates.© 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号