首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   82篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   13篇
  2018年   5篇
  2017年   16篇
  2016年   21篇
  2015年   16篇
  2014年   23篇
  2013年   69篇
  2012年   15篇
  2011年   24篇
  2010年   23篇
  2009年   20篇
  2008年   22篇
  2007年   31篇
  2006年   21篇
  2005年   15篇
  2004年   18篇
  2003年   14篇
  2002年   15篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
  1994年   1篇
  1990年   2篇
排序方式: 共有410条查询结果,搜索用时 31 毫秒
111.
An R out of N repairable system consisting of N components and operates if at least R components are functioning. Repairable means that failed components are repaired, and upon repair completion they are as good as new. We derive formulas for the expected up‐time, expected down‐time, and the availability of the system, using Markov renewal processes. We assume that either the repair times of the components are generally distributed and the components' lifetimes are exponential or vice versa. The analysis is done for systems with either cold or warm stand‐by. Numerical examples are given for several life time and repair time distributions. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 483–498, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10025  相似文献   
112.
A system reliability is often evaluated by individual tests of components that constitute the system. These component test plans have advantages over complete system based tests in terms of time and cost. In this paper, we consider the series system with n components, where the lifetime of the i‐th component follows exponential distribution with parameter λi. Assuming test costs for the components are different, we develop an efficient algorithm to design a two‐stage component test plan that satisfies the usual probability requirements on the system reliability and in addition minimizes the maximum expected cost. For the case of prior information in the form of upper bounds on λi's, we use the genetic algorithm to solve the associated optimization problems which are otherwise difficult to solve using mathematical programming techniques. The two‐stage component test plans are cost effective compared to single‐stage plans developed by Rajgopal and Mazumdar. We demonstrate through several numerical examples that our approach has the potential to reduce the overall testing costs significantly. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 95–116, 2002; DOI 10.1002/nav.1051  相似文献   
113.
In this paper, a single‐machine scheduling problem with weighted earliness and tardiness penalties is considered. Idle time between two adjacent jobs is permitted and due dates of jobs could be unequal. The dominance rules are utilized to develop a relationship matrix, which allows a branch‐and‐bound algorithm to eliminate a high percentage of infeasible solutions. After combining this matrix with a branching strategy, a procedure to solve the problem is proposed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 760–780, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10039  相似文献   
114.
In this paper we present a componentwise delay measure for estimating and improving the expected delays experienced by customers in a multi‐component inventory/assembly system. We show that this measure is easily computed. Further, in an environment where the performance of each of the item delays could be improved with investment, we present a solution that aims to minimize this measure and, in effect, minimizes the average waiting time experienced by customers. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   
115.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   
116.
We consider the scheduling of large‐scale projects to maximize the project net present value given temporal and resource constraints. The net present value objective emphasizes the financial aspects of project management. Temporal constraints between the start times of activities make it possible to handle practical problem assumptions. Scarce resources are an expression of rising cost. Since optimization techniques are not expedient to solve such problems and most heuristic methods known from literature cannot deal with general temporal constraints, we propose a new bidirectional priority‐rule based method. Scheduling activities with positive cash flows as early and activities with negative cash flows as late as possible results in a method which is completed by unscheduling techniques to cope with scarce resources. In a computational experiment, we compare the well‐known serial generation scheme where all activities are scheduled as early as possible with the proposed bidirectional approach. On the basis of a comprehensive data set known from literature containing instances with up to 1002 activities, the efficiency of the new approach is demonstrated. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
117.
In the flow shop delivery time problem, a set of jobs has to be processed on m machines. Every machine has to process each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines so as to minimize maximum delivery completion time over all the jobs, where the delivery completion time of a job is the sum of its completion time, and the delivery time associated with that job. In this paper, we prove the asymptotic optimality of the Longest Delivery Time algorithm for the static version of this problem, and the Longest Delivery Time among Available Jobs (LDTA) algorithm for the dynamic version of this problem. In addition, we present the result of computational testing of the effectiveness of these algorithms. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
118.
The service‐provision problem described in this paper comes from an application of distributed processing in telecommunications networks. The objective is to maximize a service provider's profit from offering computational‐based services to customers. The service provider has limited capacity and must choose which of a set of software applications he would like to offer. This can be done dynamically, taking into consideration that demand for the different services is uncertain. The problem is examined in the framework of stochastic integer programming. Approximations and complexity are examined for the case when demand is described by a discrete probability distribution. For the deterministic counterpart, a fully polynomial approximation scheme is known 2 . We show that introduction of stochasticity makes the problem strongly NP‐hard, implying that the existence of such a scheme for the stochastic problem is highly unlikely. For the general case a heuristic with a worst‐case performance ratio that increases in the number of scenarios is presented. Restricting the class of problem instances in a way that many reasonable practical problem instances satisfy allows for the derivation of a heuristic with a constant worst‐case performance ratio. Worst‐case performance analysis of approximation algorithms is classical in the field of combinatorial optimization, but in stochastic programming the authors are not aware of any previous results in this direction. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
119.
信息战是现代战争中重要作战样式,网络战是信息战的重要组成部分,分布式、网络化的计算机系统是信息作战中实施攻击与防护首要作战目标。根据网络作战的需求,从技术角度出发,首先对网络战的要素组成进行了分析,在此基础上将网络战划分为两个阶段,并对此进行了深入研究,最后提出了实施网络战的方法与步骤。  相似文献   
120.
Clustering problems are often difficult to solve due to nonlinear cost functions and complicating constraints. Set partitioning formulations can help overcome these challenges, but at the cost of a very large number of variables. Therefore, techniques such as delayed column generation must be used to solve these large integer programs. The underlying pricing problem can suffer from the same challenges (non‐linear cost, complicating constraints) as the original problem, however, making a mathematical programming approach intractable. Motivated by a real‐world problem in printed circuit board (PCB) manufacturing, we develop a search‐based algorithm (Rank‐Cluster‐and‐Prune) as an alternative, present computational results for the PCB problem to demonstrate the tractability of our approach, and identify a broader class of clustering problems for which this approach can be used. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号