首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   76篇
  国内免费   5篇
  2022年   1篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   3篇
  2017年   9篇
  2016年   12篇
  2015年   11篇
  2014年   12篇
  2013年   8篇
  2012年   16篇
  2011年   23篇
  2010年   7篇
  2009年   12篇
  2008年   10篇
  2007年   11篇
  2006年   13篇
  2005年   15篇
  2004年   8篇
  2003年   7篇
  2002年   7篇
  2001年   13篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有256条查询结果,搜索用时 140 毫秒
121.
针对在三站测时差立体定位中辐射源位置不能唯一确定的情形,提出一种简单易懂、计算方便、可操作性强的解析解方法,以解决求解双曲面方程组的繁琐问题。首先利用三站相互之间的距离、由量测时差值换算得到的两个距离差值,以及辐射源至主站的距离(设为变量r)总共6个参数,立足于已知6条边长判断能否构成四面体的理论,求得r的取值范围;然后在r的值域范围内任意给定某个具体值,加上已知三站的地理位置,通过解三元一次方程组的形式获得目标在三站所在平面内垂直投影的坐标(设为变量X_h),并计算出目标至垂直投影的距离(设为变量h);最后由X_h和h给出目标在地心地固直角坐标系下的坐标。  相似文献   
122.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   
123.
We present a stochastic optimization model for planning capacity expansion under capacity deterioration and demand uncertainty. The paper focuses on the electric sector, although the methodology can be used in other applications. The goals of the model are deciding which energy types must be installed, and when. Another goal is providing an initial generation plan for short periods of the planning horizon that might be adequately modified in real time assuming penalties in the operation cost. Uncertainty is modeled under the assumption that the demand is a random vector. The cost of the risk associated with decisions that may need some tuning in the future is included in the objective function. The proposed scheme to solve the nonlinear stochastic optimization model is Generalized Benders' decomposition. We also exploit the Benders' subproblem structure to solve it efficiently. Computational results for moderate‐size problems are presented along with comparison to a general‐purpose nonlinear optimization package. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:662–683, 2001  相似文献   
124.
通过一题十种证法试图说明,共点线(共线点)问题的证明在高等几何中的重要作用。  相似文献   
125.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   
126.
This paper uses the holding time model (HTM) method to derive an approximate analytic formula for the calculation of the mean throughput of a K-station production line with no buffers between any two successive stations. Service times follow the two-stage Coxian (C2) distribution at all stations. The paper provides a formula that relates the third moment of the service completion (or virtual service) time with the respective parameters of the service time, the repair time and the time to breakdown (the latter is assumed to follow the exponential distribution). In this way, it concludes that under certain conditions the two-stage Coxian distribution can be used to approximate any general distribution matching the first three moments of the service completion time distribution. The mean holding times (consisting of the service and blocking periods) of all stations of the line are obtained in an analytical form. Numerical results are provided for the mean throughput of lines with up to 20 stations. These results are shown to have a good accuracy compared against results obtained from the Markovian state method (for short lines) and results from simulation (for longer lines). © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 669–685, 1998  相似文献   
127.
This article considers the problem of which component should be “bolstered” or “improved” in order to stochastically maximize the lifetime of a parallel system, series system, or in general, k-out-of-n system. Various ways of bolstering including active redundance, standby redundancy, and burn-in are studied. Also the method of reducing working temperature or stress level according to Arrhenius models is investigated. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 497–509, 1998  相似文献   
128.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   
129.
In this research, we consider robust simulation optimization with stochastic constraints. In particular, we focus on the ranking and selection problem in which the computing time is sufficient to evaluate all the designs (solutions) under consideration. Given a fixed simulation budget, we aim at maximizing the probability of correct selection (PCS) for the best feasible design, where the objective and constraint measures are assessed by their worst‐case performances. To simplify the complexity of PCS, we develop an approximated probability measure and derive the asymptotic optimality condition (optimality condition as the simulation budget goes to infinity) of the resulting problem. A sequential selection procedure is then designed within the optimal computing budget allocation framework. The high efficiency of the proposed procedure is tested via a number of numerical examples. In addition, we provide some useful insights into the efficiency of a budget allocation procedure.  相似文献   
130.
In this paper, we consider a coherent system with n independent and identically distributed components under the condition that the system is monitored at time instances t1 and t2 (t1 < t2). First, various mixture representations for reliability function of the conditional residual lifetime of the coherent system are derived under different scenarios at times t1 and t2 (t1 < t2). Several stochastic comparisons between two systems are also made based on the proposed conditional random variables. Then, we consider the conditional residual lifetime of the functioning components of the system given that j components have failed at time t1 and the system has failed at time t2. Some stochastic comparisons on the proposed conditional residual lifetimes are investigated. Several illustrative graphs and examples are also provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号