首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   78篇
  国内免费   5篇
  2021年   2篇
  2019年   13篇
  2018年   6篇
  2017年   15篇
  2016年   21篇
  2015年   18篇
  2014年   21篇
  2013年   70篇
  2012年   16篇
  2011年   25篇
  2010年   24篇
  2009年   24篇
  2008年   25篇
  2007年   33篇
  2006年   21篇
  2005年   14篇
  2004年   19篇
  2003年   12篇
  2002年   15篇
  2001年   13篇
  2000年   13篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
231.
在军队油料消耗预测中以直线趋势外推预测法、季节指数预测法和灰色预测法构成组合预测模型,以此为基础引入层次分析法来确定各自权重,按各项预测的重要程度求出组合预测结果。组合预测结果精度较高,并且通过对该组合预测模型中的判断矩阵灵活调整,从而可得到一组适合对应单位的油料消耗组合预测权系数,具有良好通用性,在部队中具有较好的推广价值。  相似文献   
232.
We consider a scenario with two firms determining which products to develop and introduce to the market. In this problem, there exists a finite set of potential products and market segments. Each market segment has a preference list of products and will buy its most preferred product among those available. The firms play a Stackelberg game in which the leader firm first introduces a set of products, and the follower responds with its own set of products. The leader's goal is to maximize its profit subject to a product introduction budget, assuming that the follower will attempt to minimize the leader's profit using a budget of its own. We formulate this problem as a multistage integer program amenable to decomposition techniques. Using this formulation, we develop three variations of an exact mathematical programming method for solving the multistage problem, along with a family of heuristic procedures for estimating the follower solution. The efficacy of our approaches is demonstrated on randomly generated test instances. This article contributes to the operations research literature a multistage algorithm that directly addresses difficulties posed by degeneracy, and contributes to the product variety literature an exact optimization algorithm for a novel competitive product introduction problem. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
233.
Free riding in a multichannel supply chain occurs when one retail channel engages in the customer service activities necessary to sell a product, while another channel benefits from those activities by making the final sale. Although free riding is, in general, considered to have a negative impact on supply chain performance, certain recent industry practices suggest an opposite view: a manufacturer may purposely induce free riding by setting up a high‐cost, customer service‐oriented direct store to allow consumers to experience the product, anticipating their purchase at a retail store. This article examines how the free riding phenomenon affects a manufacturer's supply chain structure decision when there are fixed plus incremental variable costs for operating the direct store. We consider factors such as the effort required to find and buy the product at a retail store after visiting the direct store, the existence of competing products in the market, and the extent of consumer need to obtain direct‐store service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
234.
We study a selling practice that we refer to as locational tying (LT), which seems to be gaining wide popularity among retailers. Under this strategy, a retailer “locationally ties” two complementary items that we denote by “primary” and “secondary.” The retailer sells the primary item in an appropriate “department” of his or her store. To stimulate demand, the secondary item is offered in the primary item's department, where it is displayed in very close proximity to the primary item. We consider two variations of LT: In the multilocation tying strategy (LT‐M), the secondary item is offered in its appropriate department in addition to the primary item's department, whereas in the single‐location tying strategy (LT‐S), it is offered only in the primary item's location. We compare these LT strategies to the traditional independent components (IC) strategy, in which the two items are sold independently (each in its own department), but the pricing/inventory decisions can be centralized (IC‐C) or decentralized (IC‐D). Assuming ample inventory, we compare and provide a ranking of the optimal prices of the four strategies. The main insight from this comparison is that relative to IC‐D, LT decreases the price of the primary item and adjusts the price of the secondary item up or down depending on its popularity in the primary item's department. We also perform a comparative statics analysis on the effect of demand and cost parameters on the optimal prices of various strategies, and identify the conditions that favor one strategy over others in terms of profitability. Then we study inventory decisions in LT under exogenous pricing by developing a model that accounts for the effect of the primary item's stock‐outs on the secondary item's demand. We find that, relative to IC‐D, LT increases the inventory level of the primary item. We also link the profitability of different strategies to the trade‐off between the increase in demand volume of the secondary item as a result of LT and the potential increase in inventory costs due to decentralizing the inventory of the secondary item. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
235.
This article studies two due window scheduling problems to minimize the weighted number of early and tardy jobs in a two‐machine flow shop, where the window size is externally determined. These new scheduling models have many practical applications in real life. However, results on these problems have rarely appeared in the literature because of a lack of structural and optimality properties for solving them. In this article, we derive several dominance properties and theorems, including elimination rules and sequencing rules based on Johnsos order, lower bounds on the penalty, and upper bounds on the window location, which help to significantly trim the search space for the problems. We further show that the problems are NP‐hard in the ordinary sense only. We finally develop efficient pseudopolynomial dynamic programming algorithms for solving the problems. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
236.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
237.
Approximate dynamic programming (ADP) is a broad umbrella for a modeling and algorithmic strategy for solving problems that are sometimes large and complex, and are usually (but not always) stochastic. It is most often presented as a method for overcoming the classic curse of dimensionality that is well‐known to plague the use of Bellman's equation. For many problems, there are actually up to three curses of dimensionality. But the richer message of approximate dynamic programming is learning what to learn, and how to learn it, to make better decisions over time. This article provides a brief review of approximate dynamic programming, without intending to be a complete tutorial. Instead, our goal is to provide a broader perspective of ADP and how it should be approached from the perspective of different problem classes. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   
238.
In this article, we study the Shewhart chart of Q statistics proposed for the detection of process mean shifts in start‐up processes and short runs. Exact expressions for the run‐length distribution of this chart are derived and evaluated using an efficient computational procedure. The procedure can be considerably faster than using direct simulation. We extend our work to analyze the practice of requiring multiple signals from the chart before responding, a practice sometimes followed with Shewhart charts. The results show that waiting to receive multiple signals severely reduces the probability of quickly detecting shifts in certain cases, and therefore may be considered a risky practice. Operational guidelines for practitioners implementing the chart are discussed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
239.
当前各种油料需求预计单纯地追求表面精确而忽视实有误差,重静止轻动态,脱离了作战保障实际。从技术、勤务和战术结合的层面,将油料需求预计不确定性因素归结为油料消耗标准本身、计划与实际运用差异、影响油耗的自然因素考虑不同、作战任务理解判断差别四点,并对各自的误差范围进行了粗略分析。提出的不确定性因素及误差范围界定,有助于引发人们对作战油料需求预计新的思考,提高油料勤务理论研究和实践能力水平。  相似文献   
240.
In a caching game introduced by Alpern et al. (Alpern et al., Lecture notes in computer science (2010) 220–233) a Hider who can dig to a total fixed depth normalized to 1 buries a fixed number of objects among n discrete locations. A Searcher who can dig to a total depth of h searches the locations with the aim of finding all of the hidden objects. If he does so, he wins, otherwise the Hider wins. This zero‐sum game is complicated to analyze even for small values of its parameters, and for the case of 2 hidden objects has been completely solved only when the game is played in up to 3 locations. For some values of h the solution of the game with 2 objects hidden in 4 locations is known, but the solution in the remaining cases was an open question recently highlighted by Fokkink et al. (Fokkink et al., Search theory: A game theoretic perspective (2014) 85–104). Here we solve the remaining cases of the game with 2 objects hidden in 4 locations. We also give some more general results for the game, in particular using a geometrical argument to show that when there are 2 objects hidden in n locations and n→∞, the value of the game is asymptotically equal to h/n for hn/2. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 23–31, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号