首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   78篇
  国内免费   5篇
  2021年   2篇
  2019年   13篇
  2018年   6篇
  2017年   15篇
  2016年   21篇
  2015年   18篇
  2014年   21篇
  2013年   70篇
  2012年   16篇
  2011年   25篇
  2010年   24篇
  2009年   24篇
  2008年   25篇
  2007年   33篇
  2006年   21篇
  2005年   14篇
  2004年   19篇
  2003年   12篇
  2002年   15篇
  2001年   13篇
  2000年   13篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有427条查询结果,搜索用时 0 毫秒
251.
Factor screening is performed to eliminate unimportant factors so that the remaining important factors can be more thoroughly studied in later experiments. Controlled sequential bifurcation (CSB) and controlled sequential factorial design (CSFD) are two new screening methods for discrete‐event simulations. Both methods use hypothesis testing procedures to control the Type I Error and power of the screening results. The scenarios for which each method is most efficient are complementary. This study proposes a two‐stage hybrid approach that combines CSFD and an improved CSB called CSB‐X. In Phase 1, a prescreening procedure will estimate each effect and determine whether CSB‐X or CSFD will be used for further screening. In Phase 2, CSB‐X and CSFD are performed separately based on the assignment of Phase 1. The new method usually has the same error control as CSB‐X and CSFD. The efficiency, on the other hand, is usually much better than either component method. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
252.
In this study, we illustrate a real‐time approximate dynamic programming (RTADP) method for solving multistage capacity decision problems in a stochastic manufacturing environment, by using an exemplary three‐stage manufacturing system with recycle. The system is a moderate size queuing network, which experiences stochastic variations in demand and product yield. The dynamic capacity decision problem is formulated as a Markov decision process (MDP). The proposed RTADP method starts with a set of heuristics and learns a superior quality solution by interacting with the stochastic system via simulation. The curse‐of‐dimensionality associated with DP methods is alleviated by the adoption of several notions including “evolving set of relevant states,” for which the value function table is built and updated, “adaptive action set” for keeping track of attractive action candidates, and “nonparametric k nearest neighbor averager” for value function approximation. The performance of the learned solution is evaluated against (1) an “ideal” solution derived using a mixed integer programming (MIP) formulation, which assumes full knowledge of future realized values of the stochastic variables (2) a myopic heuristic solution, and (3) a sample path based rolling horizon MIP solution. The policy learned through the RTADP method turned out to be superior to polices of 2 and 3. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   
253.
We study an assembly system with a single finished product managed using an echelon base‐stock or order‐up‐to policy. Some or all operations have capacity constraints. Excess demand is either backordered in every period or lost in every period. We show that the shortage penalty cost over any horizon is jointly convex with respect to the base‐stock levels and capacity levels. When the holding costs are also included in the objective function, we show that the cost function can be written as a sum of a convex function and a concave function. Throughout the article, we discuss algorithmic implications of our results for making optimal inventory and capacity decisions in such systems.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
254.
We consider a discrete time‐and‐space route‐optimization problem across a finite time horizon in which multiple searchers seek to detect one or more probabilistically moving targets. This article formulates a novel convex mixed‐integer nonlinear program for this problem that generalizes earlier models to situations with multiple targets, searcher deconfliction, and target‐ and location‐dependent search effectiveness. We present two solution approaches, one based on the cutting‐plane method and the other on linearization. These approaches result in the first practical exact algorithms for solving this important problem, which arises broadly in military, rescue, law enforcement, and border patrol operations. The cutting‐plane approach solves many realistically sized problem instances in a few minutes, while existing branch‐and‐bound algorithms fail. A specialized cut improves solution time by 50[percnt] in difficult problem instances. The approach based on linearization, which is applicable in important special cases, may further reduce solution time with one or two orders of magnitude. The solution time for the cutting‐plane approach tends to remain constant as the number of searchers grows. In part, then, we overcome the difficulty that earlier solution methods have with many searchers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
255.
Fully sequential indifference‐zone selection procedures have been proposed in the simulation literature to select the system with the best mean performance from a group of simulated systems. However, the existing sequential indifference‐zone procedures allocate an equal number of samples to the two systems in comparison even if their variances are drastically different. In this paper we propose new fully sequential indifference‐zone procedures that allocate samples according to the variances. We show that the procedures work better than several existing sequential indifference‐zone procedures when variances of the systems are different. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
256.
We consider a generalized one‐dimensional bin‐packing model where the cost of a bin is a nondecreasing concave function of the utilization of the bin. Four popular heuristics from the literature of the classical bin‐packing problem are studied: First Fit (FF), Best Fit (BF), First Fit Decreasing (FFD), and Best Fit Decreasing (BFD). We analyze their worst‐case performances when they are applied to our model. The absolute worst‐case performance ratio of FF and BF is shown to be exactly 2, and that of FFD and BFD is shown to be exactly 1.5. Computational experiments are also conducted to test the performance of these heuristics. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
257.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
258.
One traditional application of queueing models is to help set staffing requirements in service systems, but the way to do so is not entirely straightforward, largely because demand in service systems typically varies greatly by the time of day. This article discusses ways—old and new—to cope with that time‐varying demand. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
259.
In this paper, we consider a new weapon‐target allocation problem with the objective of minimizing the overall firing cost. The problem is formulated as a nonlinear integer programming model, but it can be transformed into a linear integer programming model. We present a branch‐and‐price algorithm for the problem employing the disaggregated formulation, which has exponentially many columns denoting the feasible allocations of weapon systems to each target. A greedy‐style heuristic is used to get some initial columns to start the column generation. A branching strategy compatible with the pricing problem is also proposed. Computational results using randomly generated data show this approach is promising for the targeting problem. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
260.
In this paper we consider a transportation problem where several products have to be shipped from an origin to a destination by means of vehicles with given capacity. Each product is made available at the origin and consumed at the destination at the same constant rate. The time between consecutive shipments must be greater than a given minimum time. All demand needs to be satisfied on time and backlogging is not allowed. The problem is to decide when to make the shipments and how to load the vehicles with the objective of minimizing the long run average of the transportation and the inventory costs at the origin and at the destination over an infinite horizon. We consider two classes of practical shipping policies, the zero inventory ordering (ZIO) policies and the frequency‐based periodic shipping (FBPS) policies. We show that, in the worst‐case, the Best ZIO policy has a performance ratio of . A better performance guarantee of is shown for the best possible FBPS policy. The performance guarantees are tight. Finally, combining the Best ZIO and the Best FBPS policies, a policy that guarantees a performance is obtained. Computational results show that this policy gives an average percent optimality gap on all the tested instances of <1%. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号