首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   133篇
  国内免费   12篇
  2024年   2篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   16篇
  2018年   10篇
  2017年   28篇
  2016年   37篇
  2015年   17篇
  2014年   31篇
  2013年   84篇
  2012年   30篇
  2011年   33篇
  2010年   31篇
  2009年   34篇
  2008年   32篇
  2007年   43篇
  2006年   32篇
  2005年   23篇
  2004年   24篇
  2003年   15篇
  2002年   19篇
  2001年   25篇
  2000年   20篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1990年   1篇
  1989年   4篇
排序方式: 共有634条查询结果,搜索用时 31 毫秒
231.
Most scheduling problems are notoriously intractable, so the majority of algorithms for them are heuristic in nature. Priority rule‐based methods still constitute the most important class of these heuristics. Of these, in turn, parametrized biased random sampling methods have attracted particular interest, due to the fact that they outperform all other priority rule‐based methods known. Yet, even the “best” such algorithms are unable to relate to the full range of instances of a problem: Usually there will exist instances on which other algorithms do better. We maintain that asking for the one best algorithm for a problem may be asking too much. The recently proposed concept of control schemes, which refers to algorithmic schemes allowing to steer parametrized algorithms, opens up ways to refine existing algorithms in this regard and improve their effectiveness considerably. We extend this approach by integrating heuristics and case‐based reasoning (CBR), an approach that has been successfully used in artificial intelligence applications. Using the resource‐constrained project scheduling problem as a vehicle, we describe how to devise such a CBR system, systematically analyzing the effect of several criteria on algorithmic performance. Extensive computational results validate the efficacy of our approach and reveal a performance similar or close to state‐of‐the‐art heuristics. In addition, the analysis undertaken provides new insight into the behaviour of a wide class of scheduling heuristics. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 201–222, 2000  相似文献   
232.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016  相似文献   
233.
We present the green telecommunication network planning problem with switchable base stations, where the location and configuration of the base stations are optimized, while taking into account uncertainty and variability of demand. The problem is formulated as a two‐stage stochastic program under demand uncertainty with integers in both stages. Since solving the presented problem is computationally challenging, we develop the corresponding Dantzig‐Wolfe reformulation and propose a solution approach based on column generation. Comprehensive computational results are provided for instances of varying characteristics. The results show that the joint location and dynamic switching of base stations leads to significant savings in terms of energy cost. Up to 30% reduction in power consumption cost is achieved while still serving all users. In certain cases, allowing dynamic configurations leads to more installed base stations and higher user coverage, while having lower total energy consumption. The Dantzig‐Wolfe reformulation provides solutions with a tight LP‐gap eliminating the need for a full branch‐and‐price scheme. Furthermore, the proposed column generation solution approach is computationally efficient and outperforms CPLEX on the majority of the tested instances. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 351–366, 2016  相似文献   
234.
In this article, we propose a branch‐and‐price‐and‐cut (BPC) algorithm to exactly solve the manpower routing problem with synchronization constraints (MRPSC). Compared with the classical vehicle routing problems (VRPs), the defining characteristic of the MRPSC is that multiple workers are required to work together and start at the same time to carry out a job, that is, the routes of the scheduling subjects are dependent. The incorporation of the synchronization constraints increases the difficulty of the MRPSC significantly and makes the existing VRP exact algorithm inapplicable. Although there are many types of valid inequalities for the VRP or its variants, so far we can only adapt the infeasible path elimination inequality and the weak clique inequality to handle the synchronization constraints in our BPC algorithm. The experimental results at the root node of the branch‐and‐bound tree show that the employed inequalities can effectively improve the lower bound of the problem. Compared with ILOG CPLEX, our BPC algorithm managed to find optimal solutions for more test instances within 1 hour. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 138–171, 2016  相似文献   
235.
This article studies the optimal capacity investment problem for a risk‐averse decision maker. The capacity can be either purchased or salvaged, whereas both involve a fixed cost and a proportional cost/revenue. We incorporate risk preference and use a consumption model to capture the decision maker's risk sensitivity in a multiperiod capacity investment model. We show that, in each period, capacity and consumption decisions can be separately determined. In addition, we characterize the structure of the optimal capacity strategy. When the parameters are stationary, we present certain conditions under which the optimal capacity strategy could be easily characterized by a static two‐sided (s, S) policy, whereby, the capacity is determined only at the beginning of period one, and held constant during the entire planning horizon. It is purchased up to B when the initial capacity is below b, salvaged down to Σ when it is above σ, and remains constant otherwise. Numerical tests are presented to investigate the impact of demand volatility on the optimal capacity strategy. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 218–235, 2016  相似文献   
236.
In this article, we study a two‐level lot‐sizing problem with supplier selection (LSS), which is an NP‐hard problem arising in different production planning and supply chain management applications. After presenting various formulations for LSS, and computationally comparing their strengths, we explore the polyhedral structure of one of these formulations. For this formulation, we derive several families of strong valid inequalities, and provide conditions under which they are facet‐defining. We show numerically that incorporating these valid inequalities within a branch‐and‐cut framework leads to significant improvements in computation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 647–666, 2017  相似文献   
237.
In this article, we study a parallel machine scheduling problem with inclusive processing set restrictions and the option of job rejection. In the problem, each job is compatible to a subset of machines, and machines are linearly ordered such that a higher‐indexed machine can process all those jobs that a lower‐indexed machine can process (but not conversely). To achieve a tight production due date, some of the jobs might be rejected at certain penalty. We first study the problem of minimizing the makespan of all accepted jobs plus the total penalty cost of all rejected jobs, where we develop a ‐approximation algorithm with a time complexity of . We then study two bicriteria variants of the problem. For the variant problem of minimizing the makespan subject to a given bound on the total rejection cost, we develop a ‐approximation algorithm with a time complexity of . For the variant problem of maximizing the total rejection cost of the accepted jobs subject to a given bound on the makespan, we present a 0.5‐approximation algorithm with a time complexity of . © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 667–681, 2017  相似文献   
238.
集群作战是未来空中作战的主要样式,其重构机理的研究对于提升航空集群执行任务的整体性能以及在遭受攻击时的生存能力具有重要作用。从作战任务层面出发,对集群系统重构的定义以及类型、触发机制和基本原则进行了分析阐述;借鉴博弈论理论,将航空集群系统分布式重构问题映射为多Agent之间的合作-竞争问题,建立了基于Multi-Agent的系统重构模型,给出了重构的流程与算法,为航空集群系统自适应重构能力的设计实现提供了理论技术支持。  相似文献   
239.
在详细分析威慑与威逼区别的基础上,构建了不完全信息下军事威逼讨价还价博弈模型。按照最大期望效用准则,分析了不完全信息下军事威逼走向讨价还价阶段的条件,研究表明:运用鲁宾斯坦经典讨价还价唯一完美均衡解,得出以下结论:争夺目标自身的效用越大,战争带来的声誉得益效用越大,军事威逼走向讨价还价阶段的可能性越大;一旦进入讨价还价阶段,威逼者会接受挑战者提出的方案,冲突将不再发生。  相似文献   
240.
舰载武器系统零位检测与规正方法   总被引:1,自引:1,他引:0  
零位检测与规正是作战系统装舰的基础工作,也是武器系统准确打击目标的前提和基础.鉴于传统瞄星方法和标定物标定方法的局限性,以在工程中遇到的特定环境下的武器系统标定为例,分析了具体环境下武器系统零位检测与规正的创新性运用,提出了"线标定法",以为类似情形下的武器系统或作战系统标定提供借鉴.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号