首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   95篇
  国内免费   1篇
  2024年   2篇
  2022年   2篇
  2021年   8篇
  2020年   1篇
  2019年   13篇
  2018年   6篇
  2017年   15篇
  2016年   21篇
  2015年   15篇
  2014年   16篇
  2013年   70篇
  2012年   19篇
  2011年   23篇
  2010年   23篇
  2009年   21篇
  2008年   24篇
  2007年   32篇
  2006年   25篇
  2005年   16篇
  2004年   20篇
  2003年   12篇
  2002年   14篇
  2001年   12篇
  2000年   11篇
  1999年   4篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有434条查询结果,搜索用时 15 毫秒
191.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   
192.
In a rendez‐vous search two or more teams called seekers try to minimize the time needed to find each other. In this paper, we consider s seekers in a rectangular lattice of locations where each knows the configuration of the lattice, the distribution of the seekers at time 0, and its own location, but not the location of any other. We measure time discretely, in turns. A meeting takes place when the two seekers reach the same point or adjacent points. The main result is that for any dimension of lattice, any initial distribution of seekers there are optimal strategies for the seekers that converge (in a way we shall make clear) to a center. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
193.
Consider a repeated newsvendor problem for managing the inventory of perishable products. When the parameter of the demand distribution is unknown, it has been shown that the traditional separated estimation and optimization (SEO) approach could lead to suboptimality. To address this issue, an integrated approach called operational statistics (OS) was developed by Chu et al., Oper Res Lett 36 (2008) 110–116. In this note, we first study the properties of this approach and compare its performance with that of the traditional SEO approach. It is shown that OS is consistent and superior to SEO. The benefit of using OS is larger when the demand variability is higher. We then generalize OS to the risk‐averse case under the conditional value‐at‐risk (CVaR) criterion. To model risk from both demand sampling and future demand uncertainty, we introduce a new criterion, called the total CVaR, and find the optimal OS under this new criterion. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 206–214, 2015  相似文献   
194.
We derive sufficient conditions which, when satisfied, guarantee that an optimal solution for a single‐machine scheduling problem is also optimal for the corresponding proportionate flow shop scheduling problem. We then utilize these sufficient conditions to show the solvability in polynomial time of numerous proportionate flow shop scheduling problems with fixed job processing times, position‐dependent job processing times, controllable job processing times, and also problems with job rejection. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 595–603, 2015  相似文献   
195.
In this article, we seek to understand how a capacity‐constrained seller optimally prices and schedules product shipping to customers who are heterogeneous on willingness to pay (WTP) and willingness to wait (WTW). The capacity‐constrained seller does not observe each customer's WTP and WTW and knows only the aggregate distributions of WTP and WTW. The seller's problem is modeled as an M/M/Ns queueing model with multiclass customers and multidimensional information screening. We contribute to the literature by providing an optimal and efficient algorithm. Furthermore, we numerically find that customers with a larger waiting cost enjoys a higher scheduling priority, but customers with higher valuation do not necessarily get a higher scheduling priority. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 215–227, 2015  相似文献   
196.
Two forces engage in a duel, with each force initially consisting of several heterogeneous units. Each unit can be assigned to fire at any opposing unit, but the kill rate depends on the assignment. As the duel proceeds, each force—knowing which units are still alive in real time—decides dynamically how to assign its fire, in order to maximize the probability of wiping out the opposing force before getting wiped out. It has been shown in the literature that an optimal pure strategy exists for this two‐person zero‐sum game, but computing the optimal strategy remained cumbersome because of the game's huge payoff matrix. This article gives an iterative algorithm to compute the optimal strategy without having to enumerate the entire payoff matrix, and offers some insights into the special case, where one force has only one unit. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 56–65, 2014  相似文献   
197.
Design reliability at the beginning of a product development program is typically low, and development costs can account for a large proportion of total product cost. We consider how to conduct development programs (series of tests and redesigns) for one‐shot systems (which are destroyed at first use or during testing). In rough terms, our aim is to both achieve high final design reliability and spend as little of a fixed budget as possible on development. We employ multiple‐state reliability models. Dynamic programming is used to identify a best test‐and‐redesign strategy and is shown to be presently computationally feasible for at least 5‐state models. Our analysis is flexible enough to allow for the accelerated stress testing needed in the case of ultra‐high reliability requirements, where testing otherwise provides little information on design reliability change. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
198.
The notions of the likelihood ratio order of degree s (s ≥ 0) are introduced for both continuous and discrete integer‐valued random variables. The new orders for s = 0, 1, and 2 correspond to the likelihood ratio, hazard rate, and mean residual life orders. We obtain some basic properties of the new orders and their up shifted stochastic orders, and derive some closure properties of them. Such a study is meaningful because it throws an important light on the understanding of the properties of the likelihood ratio, hazard rate, and mean residual life orders. On the other hand, the properties of the new orders have potential applications. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
199.
Customer acquisition and customer retention are the most important challenges in the increasingly competitive telecommunications industry. Traditional studies of customer switching always assume that customers are homogeneous, and thus that model customer switching behavior follows a Markov formulation. However, this postulation is obviously inappropriate in most instances. Blumen et al. (Cornell Studies of Industrial and Labor Relations, Cornell University Press, Ithaca, NY, 1955) developed the Mover–Stayer (MS) model, a generalization of the Markov chain model, to relax the requirement of homogeneity and allow the presence of heterogeneity with two different types of individuals—“stayers,” who purchase the same kinds of products or services throughout the entire observation period; and “movers,” who look for variety in products or services over time. There are two purpose of this article. First, we extend the MS model to a Double Mover‐Stayer (DMS) model by assuming the existence of three types of individuals in the market: (1) stable and loyal customers, who have stable usage within the same company; (2) instable but loyal customers, whose usage varies within the same company over time; and (3) disloyal customers, who switch from one company to another to seek for new experiences or/and benefits. We also propose an estimation method for the DMS model. Second, we apply the DMS model to telecommunications data and demonstrate how it can be used for pattern identification, hidden knowledge discovery, and decision making. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
200.
Assemble‐to‐order (ATO) is an important operational strategy for manufacturing firms to achieve quick response to customer orders while keeping low finished good inventories. This strategy has been successfully used not only by manufacturers (e.g., Dell, IBM) but also by retailers (e.g., Amazon.com). The evaluation of order‐based performance is known to be an important but difficult task, and the existing literature has been mainly focused on stochastic comparison to obtain performance bounds. In this article, we develop an extremely simple Stein–Chen approximation as well as its error‐bound for order‐based fill rate for a multiproduct multicomponent ATO system with random leadtimes to replenish components. This approximation gives an expression for order‐based fill rate in terms of component‐based fill rates. The approximation has the property that the higher the component replenishment leadtime variability, the smaller the error bound. The result allows an operations manager to analyze the improvement in order‐based fill rates when the base‐stock level for any component changes. Numerical studies demonstrate that the approximation performs well, especially when the demand processes of different components are highly correlated; when the components have high base‐stock levels; or when the component replenishment leadtimes have high variability. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号