首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2024年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
根据高性能异构加速器的特性和MiniGo的训练模式提出了一种高效的并行计算方法。对片上计算资源进行合理规划,实现异构设备之间的流水并行优化;根据异构设备间存在共享存储段设计了共享内存编码模式,减少数据传输开销;根据数字信号处理簇内具有多计算资源的特点结合算子计算-访存特性设计了不同的算子并行计算优化策略。同时,面向TensorFlow实现了一个易于使用的高性能计算库。实验结果显示,该方法实现了典型算子的多核并行计算。相对于单核,卷积算子加速比为24.69。相较于裁剪版8核FT2000+CPU,该方法训练和自博弈执行速度加速比分别为3.83和1.5。  相似文献   
2.
在CPU/GPU异构体系结构计算集群上,建立了基于MPI+CUDA的异构并行可压缩流求解器。讨论了异构结构上的可压缩流并行算法的并行模式,在CPU上执行计算密集度低、指令复杂的计算任务,在GPU上执行计算密集度高、指令单一的计算任务。通过数个算例,对比了异构并行计算和传统CPU并行计算计算结果和计算效率。将该算法运用于高超声速流动的数值模拟中,数值结果显示,基于MPI+CUDA的异构并行可压缩流求解器鲁棒性好,计算效率较CPU同构并行计算提高10倍以上。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号