首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  3篇
  2014年   1篇
  2011年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
This article introduces the use of Benders' cuts to guide a large neighborhood search to solve the traveling umpire problem, a sports scheduling problem inspired by the real‐life needs of the officials of a sports league. At each time slot, a greedy matching heuristic is used to construct a schedule. When an infeasibility is recognized first a single step backtracking is tried to resolve the infeasibility. If unsuccessful, Benders' cuts are generated to guide a large neighborhood search to ensure feasibility and to improve the solution. Realizing the inherent symmetry present in the problem, a large family of cuts are generated and their effectiveness is tested. The resulting approach is able to find better solutions to many instances of this problem. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   
2.
We derive and compute time-dependent distributions of replacement costs under warranty over the product life cycle, both for the manufacturer and the user, under conditional pro-rata and nonrenewing free-replacement warranty policies. For pro-rata warranties, the analysis is based on the joint distribution of the number of replacements and the user's cost over time. For free-replacement warranties, distribution of the user's cost follows from the observation that replacement points outside warranty periods form a renewal process. This property is also exploited to determine the distribution of the manufacturer's cost. We apply our findings to measure the impact of product conformance quality on warranty cost distributions and find that manufacturer's cost measures are more sensitive to changes in quality than user's cost measures. © 1995 John Wiley & Sons, Inc.  相似文献   
3.
The container relocation problem (CRP) is concerned with emptying a single yard‐bay which contains J containers each following a given pickup order so as to minimize the total number of relocations made during their retrieval process. The CRP can be modeled as a binary integer programming (IP) problem and is known to be NP‐hard. In this work, we focus on an extension of the CRP to the case where containers are both received and retrieved from a single yard‐bay, and call it the dynamic container relocation problem. The arrival (departure) sequences of containers to (from) the yard‐bay is assumed to be known a priori. A binary IP formulation is presented for the problem. Then, we propose three types of heuristic methods: index based heuristics, heuristics using the binary IP formulation, and a beam search heuristic. Computational experiments are performed on an extensive set of randomly generated test instances. Our results show that beam search heuristic is very efficient and performs better than the other heuristic methods.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 101–118, 2014  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号