首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2020年   1篇
  2012年   1篇
  2005年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
If the processing time of each job in a flow shop also depends on the time spent prior to processing, then the choice of a sequence influences processing times. This nonstandard scheduling problem is studied here for the minimum makespan schedule in a flow shop with two machines. The problem is NP-hard in the strong sense and already contains the main features of the general case [10]. Restricting to the case of permutation schedules, we first determine the optimal release times of the jobs for a given sequence. Permutation schedules are evaluated for this optimal policy, and the scheduling problem is solved using branch-and-bound techniques. We also show the surprising result that the optimal schedule may not be a permutation schedule. Numerical results on randomly generated data are provided for permutation schedules. Our numerical results confirm our preliminary study [10] that fairly good approximate solutions can efficiently be obtained in the case of limited computing time using the heuristics due to Gilmore and Gomory [7]. © 1993 John Wiley & Sons, Inc.  相似文献   
2.
Job shop scheduling with a bank of machines in parallel is important from both theoretical and practical points of view. Herein we focus on the scheduling problem of minimizing the makespan in a flexible two-center job shop. The first center consists of one machine and the second has k parallel machines. An easy-to-perform approximate algorithm for minimizing the makespan with one-unit-time operations in the first center and k-unit-time operations in the second center is proposed. The algorithm has the absolute worst-case error bound of k − 1 , and thus for k = 1 it is optimal. Importantly, it runs in linear time and its error bound is independent of the number of jobs to be processed. Moreover, the algorithm can be modified to give an optimal schedule for k = 2 .  相似文献   
3.
A national recycling and waste management company provides periodic services to its customers from over 160 service centers. The services are performed periodically in units of weeks over a planning horizon. The number of truck‐hours allocated to this effort is determined by the maximum weekly workload during the planning horizon. Therefore, minimizing the maximum weekly workload results in minimum operating expenses. The perfectly periodic service scheduling (PPSS) problem is defined based on the practices of the company. It is shown that the PPSS problem is strongly NP‐hard. Attempts to solve large instances by using an integer programming formulation are unsuccessful. Therefore, greedy BestFit heuristics with three different sorting schemes are designed and tested for six real‐world PPSS instances and 80 randomly generated data files. The heuristics provide effective solutions that are within 2% of optimality on average. When the best found BestFit schedules are compared with the existing schedules, it is shown that operational costs are reduced by 18% on average. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 160–171, 2012  相似文献   
4.
We study the problem of minimizing the makespan in no‐wait two‐machine open shops producing multiple products using lot streaming. In no‐wait open shop scheduling, sublot sizes are necessarily consistent; i.e., they remain the same over all machines. This intractable problem requires finding sublot sizes, a product sequence for each machine, and a machine sequence for each product. We develop a dynamic programming algorithm to generate all the dominant schedule profiles for each product that are required to formulate the open shop problem as a generalized traveling salesman problem. This problem is equivalent to a classical traveling salesman problem with a pseudopolynomial number of cities. We develop and test a computationally efficient heuristic for the open shop problem. Our results indicate that solutions can quickly be found for two machine open shops with up to 50 products. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   
5.
In this paper the problem of minimizing makespan in a two‐machine openshop is examined. A heuristic algorithm is proposed, and its worst case performance ratio and complexity are analyzed. The average case performance is evaluated using an empirical study. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 129–145, 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号