首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
2.
Terrain plays a major role in mountain battle. The advancing (attacking) force is usually restricted to move in a single column—along a narrow, winding, and steep road. The defending force, on the other hand, which is static, can select its positions such that most of its firepower can be effective against the front unit(s) of the attacking force. This combat situation is modeled as a special type of the many-on-many stochastic duel. This duel is a series of many-on-one subduels where at each such subduel the defending force units simultaneously engage the single exposed front unit of the attacking force. This special type of many-on-many stochastic duel demonstrates the possibility of practical applications of stochastic duel theory.  相似文献   
3.
We consider a multiperiod resource allocation problem, where a single resource is allocated over a finite planning horizon of T periods. Resource allocated to one period can be used to satisfy demand of that period or of future periods, but backordering of demand is not allowed. The objective is to allocate the resource as smoothly as possible throughout the planning horizon. We present two models: the first assumes that the allocation decision variables are continuous, whereas the second considers only integer allocations. Applications for such models are found, for example, in subassembly production planning for complex products in a multistage production environment. Efficient algorithms are presented to find optimal allocations for these models at an effort of O(T2). Among all optimal policies for each model, these algorithms find the one that carries the least excess resources throughout the planning horizon. © 1995 John Wiley & Sons, Inc.  相似文献   
4.
In this paper we present a new combinatorial problem, called minmax multidimensional knapsack problem (MKP), motivated by a military logistics problem. The logistics problem is a two‐period, two‐level, chance‐constrained problem with recourse. We show that the MKP is NP‐hard and develop a practically efficient combinatorial algorithm for solving it. We also show that under some reasonable assumptions regarding the operational setting of the logistics problem, the chance‐constrained optimization problem is decomposable into a series of MKPs that are solved separately. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
5.
In this article, we study aging properties of parallel and series systems with a random number of components. We show that the decreasing likelihood ratio property is closed under the formation of random minima. We also show, by counterexamples, that other aging properties are not closed under the formation of random minima or maxima. Some mistakes in the literature are corrected. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 238–243, 2014  相似文献   
6.
Abdel Hameed and Shimi [1] in a recent paper considered a shock model with additive damage. This note generalizes the work of Abdel Hameed and Shimi by showing that the a-priori restriction to replacement at a shock time made in [1] is unnecessary.  相似文献   
7.
A production system which generates income is subject to random failure. Upon failure, the system is replaced by a new identical one and the replacement cycles are repeated indefinitely. In our breakdown model, shocks occur to the system in a Poisson stream. Each shock causes a random amount of damage, and these damages accumulate additively. The failure time depends on the accumulated damage in the system. The income from the system and the cost associated with a planned replacement depend on the accumulated damage in the system. An additional cost is incurred at each failure in service. We allow a controller to replace the system at any stopping time T before failure time. We will consider the problem of specifying a replacement rule that is optimal under the following criteria: maximum total long-run average net income per unit time, and maximum total long-run expected discounted net income. Our primary goal is to introduce conditions under which an optimal policy is a control limit policy and to investigate how the optimal policy can be obtained. Examples will be presented to illustrate computational procedures.  相似文献   
8.
The large body of work on stochastic duels represents an attempt to model combat situations, or parts of it, by means of formal probability models. Most, but not all, of the existing stochastic duel models, however, relate to static posture and fail to capture dynamic aspects as well as tactical considerations that may be present. In this article we propose a simple model of a two-on-one duel in which dynamic and tactical aspects are considered. The model represents a combat situation that is typical of a battle in which a maneuvering force attacks a smaller defending unit that is static.  相似文献   
9.
This article considers a particular printed circuit board (PCB) assembly system employing surface mount technology. Multiple, identical automatic placement machines, a variety of board types, and a large number of component types characterize the environment studied. The problem addressed is that of minimizing the makespan for assembling a batch of boards with a secondary objective of reducing the mean flow time. The approach adopted is that of grouping boards into production families, allocating component types to placement machines for each family, dividing of families into board groups with similar processing times, and the scheduling of groups. A complete setup is incurred only when changing over between board families. For the environment studied, precedence constraints on the order of component placement do not exist, and placement times are independent of feeder location. Heuristic solution procedures are proposed to create board subfamilies (groups) for which the component mounting times are nearly identical within a subfamily. Assignment of the same component type to multiple machines is avoided. The procedures use results from the theory of open-shop scheduling and parallel processor scheduling to sequence boards on machines. Note that we do not impose an open-shop environment but rather model the problem in the context of an open shop, because the order of component mountings is immaterial. Three procedures are proposed for allocating components to machines and subsequently scheduling boards on the machines. The first two procedures assign components to machines to balance total work load. For scheduling purposes, the first method groups boards into subfamilies to adhere to the assumptions of the open-shop model, and the second procedure assumes that each board is a subfamily and these are scheduled in order of shortest total processing time. The third procedure starts by forming board subfamilies based on total component similarity and then assigns components to validate the open-shop model. We compare the performance of the three procedures using estimated daily, two-day, and weekly production requirements by averaging quarterly production data for an actual cell consisting of five decoupled machines. © 1994 John Wiley & Sons, Inc.  相似文献   
10.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号