首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2014年   1篇
  2009年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Heterocyclic skeleton (Azoles) and different energetic groups containing high performing explosives are highly emerged in recent years to meet the challenging requirements of energetic materials in both military and civilian applications with improved performance. For this purpose tetrazole (Azole) is identified as an attractive heterocyclic backbone with energetic functional groups nitro (-NO2), nitrato (-ONO2), nitrimino (-NNO2), and nitramino (–NH–NO2) to replace the traditionally used high performing explosives. The tetrazole based compounds having these energetic functional groups demonstrated advanced energetic performance (detonation velocity and pressure), densities, and heat of formation (HOF) and became a potential replacement of traditional energetic compounds such as RDX. This review presents a summary of the recently reported nitro-tetrazole energetic compounds containing poly-nitro, di/mono-nitro, nitrato/nitramino/nitrimino, bridged/bis/di tetrazole and nitro functional groups, describing their preparation methods, advance energetic properties, and further applications as high-performing explosives, especially those reported in the last decade. This review aims to provide a fresh concept for designing nitro-tetrazole based high performing explosives together with major challenges and perspectives.  相似文献   
2.
《防务技术》2022,18(11):1945-1959
Primary explosives are utilized as a reliable initiator for secondary explosives in an extensive range of military and civilian operations. Heavy–metal–based primary explosives are moderate performing, more sensitive, and environmentally hazardous, posing a direct and indirect threat to health and safety. Therefore, heavy–metal–based primaries have been replaced by environment-friendly metal-based primary explosives, such as potassium complexes. This review presents not only a summary of the current progress of new-generation potassium-based primary explosives and their methods of preparation, energetic properties, and applications, but also a further comparison with traditional primary explosives. In addition, this work discusses the necessity of heavy metal–free primary explosives and the major challenges faced in replacing traditional primary explosives.  相似文献   
3.
《防务技术》2022,18(11):1979-1999
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum (Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed, and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction (diffusion and kinetic) between the Al powder and the detonation products; the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation.  相似文献   
4.
A common criticism levelled at successive governments of the Republic of Ireland during the Northern Ireland ‘Troubles’ was their alleged inactivity in the face of a ferocious Provisional IRA campaign. Such criticisms were based in large part on the perception of the southern state as a supply base for militant republicanism. The Republic was undoubtedly a formidable logistics hinterland for such militants. However, criticisms of the reactions of authorities in the south are unfair. This article considers the explosives capabilities of the IRA during the first six years of their campaign. It does so with reference to their attempts to obtain commercial explosives as well as measures employed by them to obtain homemade explosives. The article also considers countermeasures employed by the southern government and reveals the extent to which they sought to shut down IRA capabilities in the south. It is argued that, ultimately, the IRA's campaign in this regard could only be contained and never unilaterally halted.  相似文献   
5.
This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds (sensitivity, thermal decomposition parameters, and detonation parameters) were compared with those of 1,3,5-triamino-2,4,6-trinitrobenzene, which still seems to be an unrivalled model of a thermally resistant and generally low-sensitivity explosive material. New thermally stable explosives (TSEs) were found among macromolecular compounds with tri- and dinitrophenyl groups, nitro and amine-nitro derivatives of azoles, and polynitro derivatives of calixarenes. Some of them match TATB in terms of thermal resistance and additionally have higher detonation parameters.  相似文献   
6.
《防务技术》2020,16(2):316-324
This research aims to contribute to the safe methodology for additive manufacturing (AM) of energetic materials. Coating formulation processes were investigated and evaluated to find a suitable method that may enable selective laser sintering (SLS) as the safe method for fabrication of high explosive (HE) compositions. For safety and convenience reasons, the concept demonstration was conducted using inert explosive simulants with properties quasi-similar to the real HE. Coating processes for simulant RDX-based microparticles by means of PCL and 3,4,5-trimethoxybenzaldehyde (as TNT simulant) are reported. These processes were evaluated for uniformity of coating the HE inert simulant particles with binder materials to facilitate the SLS as the adequate binding and fabrication method. Suspension system and single emulsion methods gave required particle near spherical morphology, size and uniform coating. The suspension process appears to be suitable for the SLS of HE mocks and potential formulation methods for active HE composites. The density is estimated to be comparable with the current HE compositions and plastic bonded explosives (PBXs) such as C4 and PE4, produced from traditional methods. The formulation method developed and understanding of the science behind the processes paves the way toward safe SLS of the active HE compositions and may open avenues for further research and development of munitions of the future.  相似文献   
7.
《防务技术》2020,16(3):642-650
This work aims to research the effects on the early responses of the air-backed plate subjected to the loading generated by the underwater explosion with aluminized explosives. The loading characteristics of underwater explosion for ideal explosive (TNT), aluminized explosives (RS211 and RBUL) are obtained experimentally. The tested aluminized explosives have different energy output compared with TNT. Based on the Taylor plate theory, the early responses of the air-backed steel plate affected by the measured loading is analyzed. The analytical results indicate that the pressure curve of the shock wave within 1 time decay constant is the main factor affecting the kick-off velocity of the plate when cavitation occurring. The velocity responses of the plate produced by the loading of RS211 and RBUL are obviously different with that of an equivalent TNT charge, which also indicates validity and suitability should be noticed in the case of substituting TNT for aluminized explosives. Moreover, the uncertainties in the responses of the plate produced by RS211 and RBUL are much larger than TNT.  相似文献   
8.
近年来,恐怖分子热衷于使用液体炸弹实施袭击,利用其制造简易、携带隐蔽、识别困难、现场配用等特点,逃避安全检查。液体炸药的有效识别和探测,成为各国安全部门亟待解决的问题。  相似文献   
9.
《防务技术》2020,16(2):290-298
In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions, the free-field shockwave, ground reflection shockwave and Mach wave overpressure time history of composition B explosive, RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors. The shape of the free-field shock wave, ground reflection shock wave, and Mach wave and explosion flame were captured by high-speed camera. The experimental results show that, at the same horizontal distance from the initiation point, the peak overpressure of explosive shock wave of composition B explosive, both in the air and on the ground, is less than that of RDX and aluminized explosives. At a distance of 3.0 m from the initiation point, the peak overpressure of aluminized explosives is slightly less than that of RDX explosives. Owing to the exothermic effect of aluminum powder, the pressure drop of aluminized explosives is slower than that of RDX explosives. At 5.0 m from the initiation point, the peak overpressure of aluminized explosives is larger than that of RDX explosives. At the same position from the initiation point, among the three kinds of explosives, the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum. With the increase of the horizontal distance from the initiation point, the height of Mach triple-points (Mach steam) of the three explosives increases gradually. At the same horizontal distance from the initiation point, there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive, and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives. The maximum diameter and duration of the fireball formed by aluminized explosives are the largest, followed by composition B explosive, and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号