首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2022年   2篇
  2021年   3篇
  1999年   1篇
  1988年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
In this study, the buckling analysis of a Graphene oxide powder reinforced (GOPR) nanocomposite shell is investigated. The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem. The governing equations are solved via Galerkin's method, which is a powerful analytical method for static and dynamic problems. Comparison study is performed to verify the present formulation with those of previous data. New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumfer-ential wave number. Besides, the influences of weight fraction of nanofillers, length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored.  相似文献   
2.
3.
本文仅就结构动力稳定性问题分类、动力稳定性准则、动力稳定性模型及动力稳定性求解方法作一简略介绍。  相似文献   
4.
建立了纵横加筋圆柱曲板和圆柱壳的弹性稳定性临界压力公式.对文献中关于大直径环肋薄壳的异常及潜艇实肋板带纵骨式耐压液舱壳板的稳定性进行了计算,并探讨筋条的偏心、纵筋数目的奇偶性对壳体稳定性的影响  相似文献   
5.
An effective hybrid optimization method is proposed by integrating an adaptive Kriging (A-Kriging) into an improved partial swarm optimization algorithm (IPSO) to give a so-called A-Kriging-IPSO for maxi-mizing the buckling load of laminated composite plates (LCPs) under uniaxial and biaxial compressions. In this method, a novel iterative adaptive Kriging model, which is structured using two training sample sets as active and adaptive points, is utilized to directly predict the buckling load of the LCPs and to improve the efficiency of the optimization process. The active points are selected from the initial data set while the adaptive points are generated using the radial random-based convex samples. The cell-based smoothed discrete shear gap method (CS-DSG3) is employed to analyze the buckling behavior of the LCPs to provide the response of adaptive and input data sets. The buckling load of the LCPs is maximized by utilizing the IPSO algorithm. To demonstrate the efficiency and accuracy of the proposed methodology, the LCPs with different layers (2, 3, 4, and 10 layers), boundary conditions, aspect ratios and load patterns (biaxial and uniaxial loads) are investigated. The results obtained by proposed method are in good agreement with the literature results, but with less computational burden. By applying adaptive radial Kriging model, the accurate optimal results-based predictions of the buckling load are obtained for the studied LCPs.  相似文献   
6.
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号