首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   5篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有16条查询结果,搜索用时 156 毫秒
1.
通过对玻璃钢阻燃技术的介绍,以及老化对玻璃钢性能的影响,提出阻燃玻璃钢材质在自然环境中同样存在因老化而出现阻燃性降低的问题。  相似文献   
2.
利用建立在超杨-米尔斯理论基础上的胶子量子态饱和模型及Peterson璨夸克碎裂函数,在色玻璃凝聚理论框架下研究了ep(electron proton)深度非弹性散射中的D-介子产生。计算发现:在LHeC(Large Hadron-electronCollider)能量下,小Q2区域会出现极小Bjorken-x区域的璨介子产生截面不依赖于x变化的现象。就LHeC能量下D-介子产生截面随横向动量变化的实验现象给出了理论预言,理论结果将被即将运行的LHeC实验检验。  相似文献   
3.
This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes (CNTs) on the mechanical properties of Cu64Zr36 metallic glass (MG). Three types of functional groups, carboxylic, vinyl and ester were used. The effect of CNT volume fraction (Vf) and the number of functional groups attached to CNT, on the mechanical properties and thermal conductivity of CNT-MG composites was analysed using Biovia Materials Studio. At lower values of Vf (from 0 to 5%), the per-centage increase in Young's modulus was approximately 66%. As the value of Vf was increased further (from 5 to 12%), the rate of increase in Young's modulus was reduced to 16%. The thermal conductivity was found to increase from 1.52 W/mK at Vf=0%to 5.88 W/mK at Vf=12%, thus giving an increase of approximately 286%. Functionalization of SWCNT reduced the thermal conductivity of the SWCNT-MG composites.  相似文献   
4.
对防火玻璃及防火玻璃隔墙的应用标准、技术要求、设置范围以及在建筑工程防火设计和施工应用中存在的问题和解决措施进行了分析和探讨。  相似文献   
5.
通过碳纳米管的不同表面官能化,构造其与环氧树脂的不同界面。采用动态机械性能分析研究不同表面官能化碳纳米管对环氧树脂复合材料玻璃化转变温度的影响;采用摆锤冲击试验研究环氧树脂复合材料的韧性。结果表明:与纯环氧树脂相比,氨基化碳纳米管/环氧树脂复合材料的玻璃化转变温度升高,而羧基化碳纳米管/环氧树脂复合材料的玻璃化转变温度反而有所下降;碳纳米管/环氧树脂复合材料的冲击强度相比纯环氧树脂均提高了近一倍。复合材料性能的这些变化规律主要归因于不同表面官能化碳纳米管与环氧树脂基体间形成了不同的界面。  相似文献   
6.
粉末涂料聚酯树脂性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
在合成粉末涂料聚酯树脂配方中,着重研究了醇、酸对聚酯树脂玻璃化温度的影响,同时将合成产品进行表征,结果表明,合成产品的主要性能指标与国际同类产品相近。  相似文献   
7.
在合成粉末涂料聚酯树脂的配方中,重点研究了催化剂、抗氧剂、酸值、醇的损失对聚酯树脂玻璃化温度的影响,并将合成产品进行表征,主要性能指标与美国同类产品接近。  相似文献   
8.
Composite solid propellants (CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides (MOs), complexes, metal powders and metal alloys have shown positive catalytic behaviour during the com-bustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.  相似文献   
9.
《防务技术》2019,15(3):282-294
In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.  相似文献   
10.
《防务技术》2020,16(1):77-87
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation. Hybrid structures with rectangular cores in transverse orthogonal arrangement and slide-fitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4 (Ti6Al4V), AISI 4340 steel and 7075 aluminum alloy panels, respectively. The results showed that the hybrid structure of Ti6Al4V exhibited the highest penetration resistance, followed by that of 7075 aluminum alloy with the same area density. The penetration resistance of the hybrid structure of AISI 4340 steel was the lowest. The underlying mechanisms showed that the metallic material of a ceramic-metal hybrid structure can directly affect its energy absorption from the impact projectile, which further affects its penetration resistance. Different metallic frames exhibited different failure characteristics, resulting in different constraint conditions or support conditions for ceramic prisms. The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure, and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure. The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure. In addition, because the ceramic-metal hybrid structures in the present work were heterogeneous, impact position has slight influence on their penetration resistances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号