首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   1篇
  2004年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
A problem we call recurrent construction involves manufacturing large, complex, expensive products such as airplanes, houses, and ships. Customers order configurations of these products well in advance of due dates for delivery. Early delivery may not be permitted. How should the manufacturer determine when to purchase and release materials before fabrication, assembly, and delivery? Major material expenses, significant penalties for deliveries beyond due dates, and long product makespans in recurrent construction motivate choosing a release timetable that maximizes the net present value of cash flows. Our heuristic first projects an initial schedule that dispatches worker teams to tasks for the backlogged products, and then solves a series of maximal closure problems to find material release times that maximize NPV. This method compares favorably with other well‐known work release heuristics in solution quality for large problems over a wide range of operating conditions, including order strength, cost structure, utilization level, batch policy, and uncertainty level. Computation times exhibit near linear growth in problem size. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
2.
In urban rail transit systems of large cities, the headway and following distance of successive trains have been compressed as much as possible to enhance the corridor capacity to satisfy extremely high passenger demand during peak hours. To prevent train collisions and ensure the safety of trains, a safe following distance of trains must be maintained. However, this requirement is subject to a series of complex factors, such as the uncertain train braking performance, train communication delay, and driver reaction time. In this paper, we propose a unified mathematical framework to analyze the safety‐oriented reliability of metro train timetables with different corridor capacities, that is, the train traffic density, and determine the most reliable train timetable for metro lines in an uncertain environment. By employing a space‐time network representation in the formulations, the reliability‐based train timetabling problem is formulated as a nonlinear stochastic programming model, in which we use 0‐1 variables to denote the time‐dependent velocity and position of all involved trains. Several reformulation techniques are developed to obtain an equivalent mixed integer programming model with quadratic constraints (MIQCP) that can be solved to optimality by some commercial solvers. To improve the computational efficiency of the MIQCP model, we develop a dual decomposition solution framework that decomposes the primal problem into several sets of subproblems by dualizing the coupling constraints across different samples. An exact dynamic programming combined with search space reduction strategies is also developed to solve the exact optimal solutions of these subproblems. Two sets of numerical experiments, which involve a relatively small‐scale case and a real‐world instance based on the operation data of the Beijing subway Changping Line are implemented to verify the effectiveness of the proposed approaches.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号