首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应变异粒子群算法的火力分配方法研究
引用本文:欧微,王克勤,朱岑. 基于自适应变异粒子群算法的火力分配方法研究[J]. 指挥控制与仿真, 2012, 34(3): 50-53
作者姓名:欧微  王克勤  朱岑
作者单位:乌鲁木齐民族干部学院,新疆乌鲁木齐,830002
摘    要:针对最优火力分配的特点,分析了火力分配优化问题的数学模型,设计了一种求解该类问题的自适应变异粒子群算法(Adaptive Mutation Particle Swarm Optimization, AMPSO)。该算法采用十进制编码方法和基于数值运算的个体更新方法;为平衡算法的局部搜索能力和全局收敛性能,设计了一种关键参数自适应调整方法;为增强种群在进化后期的多样性,提出了一种变异策略。仿真结果表明,所提AMPSO算法具有良好的寻优性能,是优化火力分配的一种有效算法。

关 键 词:火力分配,粒子群算法,编码方法,变异策略

Study on Firepower Optimum Distribution Approach Based on Adaptive Mutation Particle Swarm Optimization
Ou Wei,wang ke qin and zhu cen. Study on Firepower Optimum Distribution Approach Based on Adaptive Mutation Particle Swarm Optimization[J]. Command Control & Simulation, 2012, 34(3): 50-53
Authors:Ou Wei  wang ke qin  zhu cen
Affiliation:Urumqi College of Minority cadre,Urumqi College of Minority Cadre,Urumqi College of Minority Cadre
Abstract:According to the principle of firepower optimum distribution, the mathematics model of firepower distribution problem is analyzed, whereas an improved particle swarm optimization ( AMPSO ) to this problem is designed. A decimalist encoding method and a particle update strategy based on numerical value operation are introduced, a dynamic adjusting strategy of key parameters is introduced to balance the local searching ability and global convergence performance, whereas a mutation strategy is proposed to In order to enhance the diversity of populations in the later evolution. The result of simulation experiment indicates the efficiency of the AMPSO, whereas the rationality of firepower distribution scheme gained are demonstrated.
Keywords:firepower distribution   particle swarm optimization   encoding method   mutation strategy
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《指挥控制与仿真》浏览原始摘要信息
点击此处可从《指挥控制与仿真》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号