首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-RBF网络的储运过程管道堵塞故障诊断方法
引用本文:陈扶明,税爱社,李生林,陈芬兰. 基于PCA-RBF网络的储运过程管道堵塞故障诊断方法[J]. 后勤工程学院学报, 2014, 0(3): 91-96
作者姓名:陈扶明  税爱社  李生林  陈芬兰
作者单位:后勤工程学院后勤信息与军事物流工程系;西安地下铁道公司;
摘    要:针对现代储运过程管道堵塞故障诊断时,提取的过程参数多导致诊断速度慢、性能差等问题,提出了基于主成分分析(PCA)和径向基函数(RBF)神经网络故障的诊断方法。首先利用PCA方法对储运过程高维历史数据矩阵进行特征提取,提取的故障特征信息作为训练集,并给出故障特征信息的分类号;然后将其作为RBF神经网络分类器的输入输出进行故障模式识别。仿真实验表明:该方法应用于储运过程管道堵塞故障诊断,不仅大幅度地降低了诊断模型的训练时间,而且提高了诊断正确率。

关 键 词:主成分分析  RBF神经网络  管道堵塞  故障诊断

Fault Diagnosis Method of Storage and Transportation Process Blockage in Pipelines Based on PCA and RBF Network
Affiliation:Chen Fu-ming, Shui Ai-she, Li Sheng-lin, Chen Fen-lan ( 1. Dept. of Logistics Information & Logistics Engineering, LEU, Chongqing 401311, China; 2. Xi' an Metro Company Limited Operating Branch, Xi' an 710055, China)
Abstract:Many process parameters are selected to diagnose modern storage and transportation process blockage in pipelines, which makes diagnosis slow and its performance poor. To address it, a fault diagnosis method based on principal component analysis(PCA)and radical basis function(RBF)network was proposed. Firstly, PCA method was used to extract the feature of high historical data, as the training set. And the classification of the fault characteristic information was given and then the input and output of RBF network classifiers were taken to identify the failure mode. The simulation results show that the method in pipeline of transportation jam fault diagnosis not only greatly reduces the diagnostic model training time but also improves the diagnostic accuracy.
Keywords:PCA  RBF network  pipeline blockage  fault diagnosis
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号