首页 | 本学科首页   官方微博 | 高级检索  
     


Data‐driven variation source identification for manufacturing process using the eigenspace comparison method
Authors:Nong Jin  Shiyu Zhou
Abstract:Variation reduction of manufacturing processes is an essential objective of process quality improvement. It is highly desirable to develop a methodology of variation source identification that helps quickly identify the variation sources, hence leading to quality improvement and cost reduction in manufacturing systems. This paper presents a variation source identification method based on the analysis of the covariance matrix of process quality measurements. The identification procedure utilizes the fact that the eigenspace of the quality measurement covariance matrix can be decomposed into a subspace due to variation sources and a subspace purely due to system noise. The former subspaces for different samples will be the same if the same variation sources dominate. A testing procedure is presented, which can determine the closeness of the subspaces under sampling uncertainty. A case study is conducted to illustrate the effectiveness of this methodology. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006.
Keywords:eigenspace  factor analysis  principal component analysis  variation reduction  variation source identification
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号