首页 | 本学科首页   官方微博 | 高级检索  
     

基于镜像延拓和神经网络的EMD端点效应改进方法
引用本文:王传菲,安钢,王凯,胡易平. 基于镜像延拓和神经网络的EMD端点效应改进方法[J]. 装甲兵工程学院学报, 2010, 24(2)
作者姓名:王传菲  安钢  王凯  胡易平
作者单位:装甲兵工程学院机械工程系,北京,100072
摘    要:经验模态分解(Empirical Mode Decomposition,EMD)在机械故障诊断中存在一个比较严重的问题,即端点效应。镜像延拓是克服端点效应的有效方法,采用镜像延拓处理端点效应时,要求将镜面放置在局部极值点处,针对这一问题,提出了一种基于镜像延拓和神经网络相结合的数据延拓方法。采用神经网络预测原信号序列,将信号向前向后各延拓一个极值点,再采用镜像延拓有效地减小EMD分解中的端点效应。通过对仿真信号的分析,验证了该方法能有效抑制EMD方法中的端点效应问题。

关 键 词:经验模态分解  端点效应  镜像延拓  神经网络

Improved Method for End Effects of EMD Based on Mirror Extension and Neural Network
WANG Chuan-Fei,AN Gang,WANG Kai,HU Yi-ping. Improved Method for End Effects of EMD Based on Mirror Extension and Neural Network[J]. Journal of Armored Force Engineering Institute, 2010, 24(2)
Authors:WANG Chuan-Fei  AN Gang  WANG Kai  HU Yi-ping
Affiliation:WANG Chuan-Fei,AN Gang,WANG Kai,HU Yi-ping(Department of Mechanical Engineering,Academy of Armored Force Engineering,Beijing 100072,China)
Abstract:Empirical Mode Decomposition (EMD) has been employed extensively in mechanical fault diagnosis,but the serious problem existed in the application is end effects. Mirror Extension is an effective method to overcome it. When the mirror extension is used to treat with end effects,it needs to put the mirror at local extreme point. Aiming at this problem,a method combining the mirror extension with the Neural Network is proposed to extend the data. The Neural Network is adopted to forecast an extreme point forwa...
Keywords:Empirical Mode Decomposition (EMD)  end effects  mirror extension  neural network  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号