首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法与最大最小原理的故障模式特征选择
引用本文:谢涛,张育林. 基于遗传算法与最大最小原理的故障模式特征选择[J]. 国防科技大学学报, 1998, 20(2): 17-21
作者姓名:谢涛  张育林
作者单位:国防科技大学航天技术系
摘    要:在诸如液体火箭发动机等复杂动力学系统的故障诊断中,监控参数组的优选问题一直受到工程技术人员的高度重视。本文提出了综合样本矢量方向离散度概念,以此作为故障特征参数的优选准则;然后利用经过改进的遗传算法,对某液体火箭发动机常见故障的诊断进行了特征参数组的优选。在改进的遗传算法中,采用了非常简洁而高效的染色体编码,针对特征优选的组合优化类问题专门设计了一种特殊的基因迁移算子,并引进了父本个体适应值的动态调整技术与共享函数。数值实验结果表明,该算法具有理想的效果。

关 键 词:统计聚类  样本矢量方向离散度  故障特征参数选择  故障仿真  优化  遗传算法
收稿时间:1997-04-01

Max-Min Principle Based-Selection for the Optimal Feature Parameters in Fault Diagnos is Using Genetic Algorithms
Xie Tao and Zhang Yulin. Max-Min Principle Based-Selection for the Optimal Feature Parameters in Fault Diagnos is Using Genetic Algorithms[J]. Journal of National University of Defense Technology, 1998, 20(2): 17-21
Authors:Xie Tao and Zhang Yulin
Affiliation:Department of Aerospace Technology, NUDT, Changsha, 410073;Department of Aerospace Technology, NUDT, Changsha, 410073
Abstract:Much inportance has been attachad to the selection of optimal feature parameters subset in the fault diagnosis fields such as liquid rocket propulsion system.This paper presents an effective method of selection for the optimal feature parameters subset using Genetic Algorithms and based on the maximum and minimum clustering criterion for samples,so that the selected feature parameters subset can be used to compose a simplified real time fault classifier with high robustness to various sorts of noises and disturbances.First,a composite directional divergence index for samples is proposed as an evaluation criterion for the selected feature parameters subset for fault diagnosis'purpose;then,Genetic Algorithm has been modified in parts for this specific permutation problem,the dynamic fitness adaptation technique and all sharing function are introduced in order to avoid the population's premature convergence.An ad hoc genetic operator is specially designed to improve the feature selection efficiency.In an addition,all the selection procedures for the optimal feature parameters subset are based on the data set for 16 sorts of common faults simulated for a type of liquid rocket engine system.The numerical experiments show that this selection algorithm is highly effective and the constructed fault classifier with the selected feature parameters possesses morerobustness.
Keywords:statistic clustering  directional divergence index for samples  feature selection  fault simulation  optimization   genetic Algorithms.  
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号