首页 | 本学科首页   官方微博 | 高级检索  
     

网络入侵检测系统中的数据缩减技术
引用本文:邹 涛,孙宏伟,田新广,张尔扬. 网络入侵检测系统中的数据缩减技术[J]. 国防科技大学学报, 2003, 25(6): 16-20
作者姓名:邹 涛  孙宏伟  田新广  张尔扬
作者单位:国防科技大学电子科学与工程学院,湖南,长沙,410073
摘    要:在进行事件分析之前,网络入侵检测系统首先要面对数据缩减的问题。以ANIDS为背景,分析了两种重要的数据缩减技术:相关特征子集选择和特征再构造。提出了一种基于Wrapper方法的最优特征子集选取算法SRRW。在考虑学习算法偏置的情况下,通过识别强相关特征并引入约束,能够更快地搜索并获得最优的相关特征子集。从特征再构造角度出发实现数据缩减,并通过因子负荷量矩阵分析了原始特征之间的相关性。

关 键 词:网络入侵检测  数据缩减  相关特征选取  主成分分析
文章编号:1001-2486(2003)06-0016-05
收稿时间:2003-05-13
修稿时间:2003-05-13

Data Reduction in Network Based on the Intrusion Detection System
ZOU Tao,SUN Hongwei,TIAN Xinguang and ZHANG Eryang. Data Reduction in Network Based on the Intrusion Detection System[J]. Journal of National University of Defense Technology, 2003, 25(6): 16-20
Authors:ZOU Tao  SUN Hongwei  TIAN Xinguang  ZHANG Eryang
Affiliation:College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China;College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China;College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China;College of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, China
Abstract:NIDSs deal with the problem of data reduction before analyzing the events. Two important measures used in ANIDS are proposed: FSS and new feature construction. A novel algorithm named SRRW is put forward first, which can produce OFS by recognizing all strongly relevant features and restrict them in searching process. A feature construction method is used to get the OFS. The correlations between the original features can be analyzed by factor loading matrix.
Keywords:NIDS  data reduction  relevant feature selection  PCA
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号