首页 | 本学科首页   官方微博 | 高级检索  
     

基于排放和模糊神经网络模型的柴油机故障诊断方法
引用本文:李国璋,罗亮,滕飞,高阳. 基于排放和模糊神经网络模型的柴油机故障诊断方法[J]. 军械工程学院学报, 2011, 0(5): 48-52
作者姓名:李国璋  罗亮  滕飞  高阳
作者单位:[1]军械工程学院火炮工程系,河北石家庄050003 [2]武汉军械士官学校自行火炮系,湖北武汉430075
摘    要:根据排放检测数据规律,定义并提取特征参数,建立了规则与模糊神经网络有机结合的柴油机故障诊断模型及其对应的特征知识库,确立了模型的“可塑性”学习路线,并以单缸失火故障为例,进行了模型诊断实例研究。结果表明:运用该方法进行柴油机的故障诊断,结果准确,识别速度快,诊断效率高。

关 键 词:柴油机  排放  模糊神经网络  故障诊断

Study on Fault Diagnosis of Diesel Engine Based on Exhaust Emission and Fuzzy Network
LI Guo-zhang,LUO Liang,TENG Fei,GAO Yang. Study on Fault Diagnosis of Diesel Engine Based on Exhaust Emission and Fuzzy Network[J]. Journal of Ordnance Engineering College, 2011, 0(5): 48-52
Authors:LI Guo-zhang  LUO Liang  TENG Fei  GAO Yang
Affiliation:1. Department of Artillery Engineering,Ordnance Engineering College,Shijiazhuang 050003,China; 2. Department of Self-propelled Gun,Ordnance Non-commissioned Officers Academy,Wuhan 430075 ,China)
Abstract:In this paper, a new method of fault diagnosis for diesel engine based on the exhaust emission is proposed. The parameters are defined from the emission measured data by the analysis of the emission. And the diagnosis model which is made up of the rule and the fuzzy network is built. Then the characteristic database and the plastidty principle are confirmed. Through the experimentation of fault diagnosis, we can conclude that this method of fault diagnosis is accurately, efficient and valuable.
Keywords:diesel engine  exhaust emission  fuzzy network  fault diagnosis
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号