首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基小波神经网络的装备保障方案评价模型
引用本文:绳慧. 基于径向基小波神经网络的装备保障方案评价模型[J]. 指挥控制与仿真, 2011, 33(3): 57-60,64. DOI: 10.3969/j.issn.1673-3819.2011.03.015
作者姓名:绳慧
作者单位:1. 军械工程学院,河北石家庄050003;海军航空工程学院,山东烟台264000
2. 军械工程学院,河北石家庄,050003
3. 海军航空工程学院,山东烟台,264000
摘    要:针对装备保障方案评价的实际问题,利用小波函数的多分辨率分析和逐层逼近能力,建立了基于径向基小波神经网络的装备保障方案评价方法。通过对装备保障方案中评价参数的量化,建立评价参数的样本库。将各种性能指标输入到训练好的网络,客观地评价保障方案的性能。以陆军防空旅装备保障方案为例,组织保障领域的专家对评价参数进行综合研讨,得到量化的参数值,然后使用新方法对其进行评价。仿真结果表明,径向基小波神经网络具有良好的非线性映射能力和泛化性能,能够比较准确地对装备保障方案做出评价。

关 键 词:装备保障方案  径向基小波神经网络  评价参数量化
收稿时间:2011-04-08
修稿时间:2011-05-04

Evaluating for Equipment Support Plan Based on Radial Wavelet Basis Function Neural Network
shenghui. Evaluating for Equipment Support Plan Based on Radial Wavelet Basis Function Neural Network[J]. Command Control & Simulation, 2011, 33(3): 57-60,64. DOI: 10.3969/j.issn.1673-3819.2011.03.015
Authors:shenghui
Affiliation:1.Ordnance Engineering College,Shijiazhuang 050003; 2.Naval aeronautical and astronautic university,Yantai246000,China)
Abstract:Aiming at evaluating the equipment support plan, this paper lead into wavelet function with multi-resolution approximation and a new method based on radial wavelet basis function neural network is proposed. Training samples is obtained by quantifying evaluating parameters. Then the testing data as the input of the trained network is introduced to objectively evaluating the whole effect of the equipment support plan. The simulation results indicate that radial wavelet basis function neural network owns nonlinear mapping capacity and generalization, and this method can evaluate the equipment support plan efficiently.
Keywords:equipment support plan   evaluating   radial wavelet basis function neural network   evaluating parameters quantification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《指挥控制与仿真》浏览原始摘要信息
点击此处可从《指挥控制与仿真》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号