首页 | 本学科首页   官方微博 | 高级检索  
     

多目标数据关联的神经网络方法
引用本文:窦丽华,杨国胜,陈杰,陈立潮. 多目标数据关联的神经网络方法[J]. 火力与指挥控制, 2002, 27(4): 28-30
作者姓名:窦丽华  杨国胜  陈杰  陈立潮
作者单位:北京理工大学,北京,100081
基金项目:国防科学精确制导与自动目标识别重点实验室资助项目
摘    要:数据关联是多目标跟踪的关键问题。基于 Hopfield神经网络的 JPDA是解决这一关键问题的有效方法之一 ,但此方法的难点在于优化系数的整定。提出一种改进算法 ,用于解决优化系数在线自适应整定问题。首先重新构造了李雅普诺夫能量函数 ,接着引入变化的优化系数因子 ,并给出了优化系数求解的迭代公式 ;最后对已有和改进的算法进行了仿真研究。结果表明改进的方法和原有的方法相比 ,一方面具有在线整定优化系数的功能 ,另一方面可以获得和原有算法非常接近的估计误差。

关 键 词:多目标  数据关联  Hopfield神经网络  李雅普诺夫能量函数  组合优化
文章编号:1002-0640-(2002)04-0028-03
修稿时间:2001-06-18

Research on the Algorithm of Multi-target Data Association Based-on Neural Network
DOU Li hua,YANG Guo sheng,CHEN Jie,CHEN Li chao. Research on the Algorithm of Multi-target Data Association Based-on Neural Network[J]. Fire Control & Command Control, 2002, 27(4): 28-30
Authors:DOU Li hua  YANG Guo sheng  CHEN Jie  CHEN Li chao
Abstract:Data association is the key problem in the multi target tracking.JPDA based on the Hopfield neural network is one of the effective algorithms used to solve such a problem.However,it is very difficult to fix the optimal coefficients.Considering the existing algorithm,a new algorithm used to fix the optimal coefficients is proposed by this paper.Firstly,a new Lyapunov Energy Function is reconstructed.Secondly,variable factors of the optimal coefficients are introduced ,and the iterative formulas corresponding to those coefficients are presented.At last,a simulation is performed both on the existing algorithm and the modified algorithm.Compared to the existing algorithm,the modified algorithm not only can have the ability to fix the optimal coefficients on time but also can have nearly same estimated effects as the existing algorithm does.All these results can be proved by the simulation.
Keywords:multi target  data association  hopfield neural network  lyapunov energy function  combination optimization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号