首页 | 本学科首页   官方微博 | 高级检索  
     

基于QPSO算法的支持向量机参数优化研究
引用本文:史岩,李小民,齐晓慧. 基于QPSO算法的支持向量机参数优化研究[J]. 军械工程学院学报, 2012, 0(3): 46-49
作者姓名:史岩  李小民  齐晓慧
作者单位:军械工程学院光学与电子工程系,河北石家庄050003
摘    要:应用具有量子行为的粒子群优化算法,对支持向量(SVM)进行参数优化研究.根据支持向量机的分类准确率和泛化能力之间的关系,应用QPSO算法选取比较优秀的参数模型,比较参数模型的各项性能,选取最适合实际需要的参数模型.仿真表明,QPSO算法的SVM模型与PSO算法相比在分类准确率和泛化能力上均获得更好的效果,经QPSO优化后的SVM整体性能明显提高.

关 键 词:量子粒子群优化  支持向量机  参数优化  粒子群优化

Research on Support Vector Machine with Optimized Parameters Based on Quantum-behaved Particle Swarm Optimization Algorithm
SHI Yan,LI Xiao-min,QI Xiao-hui. Research on Support Vector Machine with Optimized Parameters Based on Quantum-behaved Particle Swarm Optimization Algorithm[J]. Journal of Ordnance Engineering College, 2012, 0(3): 46-49
Authors:SHI Yan  LI Xiao-min  QI Xiao-hui
Affiliation:(Department of Optics and Electronics Engineering, Ordnance Engineering College, Shijiazhuang 050003, China)
Abstract:Quantum-behaved Particle Swarm Optimization (QPSO) is utilized to research parame- ter optimization of Support Vector Machine (SVM). According to the relationship between classi- fication accuracy and generalization of SVM,better parameter models are chosen to compare their performances in order to obtain the parameter model which is the most suitable to the actual re- quirement. Simulation shows that QPSO can obtain the better parameter model in classification accuracy and generalization and the over-all performance of SVM has a great improvement after it has been optimized by QPSO.
Keywords:Quantum-behaved Particle Swarm Optimization (QPSO)  Support Vector Machine (SVM)  parameter optimization  Particle Swarm Optimization (PSO)
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号