首页 | 本学科首页   官方微博 | 高级检索  
     

面向射频指纹识别的高效IQ卷积网络结构
引用本文:崔天舒,黄永辉,沈明,张晔,崔凯,赵文杰,安军社. 面向射频指纹识别的高效IQ卷积网络结构[J]. 国防科技大学学报, 2022, 44(4): 180-189
作者姓名:崔天舒  黄永辉  沈明  张晔  崔凯  赵文杰  安军社
作者单位:中国科学院国家空间科学中心 复杂航天系统电子信息技术重点实验室, 北京 100190;中国科学院大学 计算机科学与技术学院, 北京 100049;奥尔堡大学, 丹麦 奥尔堡 DK-9220
基金项目:中国科学院复杂航天系统电子信息技术重点实验室自主部署基金资助项目(Y42613A32S) 〖
摘    要:现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase, IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分步提取了IQ相关特征及时域特征,通过自适应平均池化获得了各通道特征均值,并用单个全连接层进行分类。实验结果表明,较传统卷积网络结构,所提网络在多种场景下的识别准确率更高,并且计算量更小。

关 键 词:IQ信号  信号特征  射频指纹  卷积神经网络  深度学习
收稿时间:2020-11-16

High-efficiency IQ convolutional network structure for radio frequency fingerprint identification
CUI Tianshu,HUANG Yonghui,SHEN Ming,ZHANG Ye,CUI Kai,ZHAO Wenjie,AN Junshe. High-efficiency IQ convolutional network structure for radio frequency fingerprint identification[J]. Journal of National University of Defense Technology, 2022, 44(4): 180-189
Authors:CUI Tianshu  HUANG Yonghui  SHEN Ming  ZHANG Ye  CUI Kai  ZHAO Wenjie  AN Junshe
Affiliation:Key Laboratory of Electronics and Information Technology for Complex Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190;School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;Aalborg University, Aalborg DK-9220, Denmark
Abstract:Existing convolutional neural networks, which are used for radio frequency fingerprints recognition, process time-sequenced IQ (in-phase and quadrature) signals as images directly, resulting in low recognition accuracy and high computation complexity. IQCNet(convolutional neural network structure based on IQ correlation features), an efficient convolutional network structure, was proposed. IQCNet firstly extracted IQ correlation features and time domain features, then obtained the average value of each channel features through adaptive average pooling, and finally used only one fully connected layer for classification. Experimental results under a variety of channel conditions show that IQCNet improves recognition accuracy greatly with lower computation complexity compared with traditional convolutional neural networks.
Keywords:IQ signal   signal characteristics   radio frequency fingerprint   convolutional neural network   deep learning
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号