首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化初始聚类中心K-Means算法的跳频信号分选
引用本文:陈利虎,张尔扬,沈荣骏. 基于优化初始聚类中心K-Means算法的跳频信号分选[J]. 国防科技大学学报, 2009, 31(2): 70-75
作者姓名:陈利虎  张尔扬  沈荣骏
作者单位:1. 国防科技大学,电子科学与工程学院,湖南,长沙,410073
2. 解放军总装备部科学技术委员会,北京,100080
摘    要:提出了一种优化初始聚类中心的方法.方法通过搜索参数统计直方图峰值预估类数目,并根据峰值位置确定聚类中心大概位置.由于优化的初始类心与实际类心相隔不远,聚类迭代次数大为减少.与传统的优化聚类中心方法相比,本方法计算量更少.最后将改进K-Means聚类算法应用于跳频信号分选,仿真结果表明,分选效果良好.

关 键 词:聚类  K-Means算法  跳频  信号分选
收稿时间:2008-09-19

The Sorting of Frequency Hopping Signals Based on K-Means Algorithm with Optimal Initial Clustering Centers
CHEN Lihu,ZHANG Eryang and SHEN Rongjun. The Sorting of Frequency Hopping Signals Based on K-Means Algorithm with Optimal Initial Clustering Centers[J]. Journal of National University of Defense Technology, 2009, 31(2): 70-75
Authors:CHEN Lihu  ZHANG Eryang  SHEN Rongjun
Affiliation:1.College of Electronic Science and Engineering;National Univ.of Defense Technology;Changsha 410073;China;2.General Equipment Department of PLA;Beijing 100080;China
Abstract:A new method is proposed to select optimal initial cluster centers.By searching parameters' histogram peak values,the number of cluster centers can be estimated,and these optimal initial cluster centers are selected in the columns or cells where the histogram peaks exist.Because these optimal initial cluster centers are near to real cluster centers,the iterations of clustering are reduced efficiently.Theoretical analysis demonstrates that the compute complexity of new method is lower than some conventional ...
Keywords:clustering  K-Means algorithm  frequency hopping  signal sorting  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号