摘 要: | 合成孔径雷达自动目标识别技术是SAR图像处理领域的研究热点,但数据样本不足的情况导致SAR-ATR应用研究受到局限。传统扩充SAR数据集的图像仿真技术模型复杂、计算量大,生成图像不够逼真。生成式对抗网络GAN不需要目标先验信息,可以直接从真实图像数据中生成逼真的图像,具有低损耗和端到端的优点,因此相较于传统方法其更适用于小样本SAR数据高质量扩充。围绕GANs在SAR图像处理中的研究应用展开叙述,介绍了获取目标SAR图像的方法,包括传统的仿真技术和基于深度学习的GANs技术;从目标图像和场景图像等2个方面介绍了GANs训练的常用SAR数据集;针对不同数据集的应用场景,重点介绍了GANs网络在目标SAR图像生成、SAR超分辨率重建、SAR和光学影像融合等3个方面的最新研究进展;最后,结合深度学习和SAR目标特性,给出了GANs网络在SAR图像应用方面的后续发展建议。
|