首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群优化RBF神经网络的算法
引用本文:李辉,蔡敏,谈亮. 基于改进粒子群优化RBF神经网络的算法[J]. 火力与指挥控制, 2012, 37(2): 144-146,150
作者姓名:李辉  蔡敏  谈亮
作者单位:海军指挥学院埔口分院,南京,211800
基金项目:海军"十一五"预研基金
摘    要:针对粒子群算法易陷入局部极小的缺陷,提出了一种改进的粒子群优化算法,并将改进后的算法应用到RBF神经网络核函数参数的选取中。依照文中提出的编码方式、迭代公式和适应度函数,在全局空间中搜索具有最优适应值的参数向量。实例仿真表明,基于改进粒子群算法优化的RBF神经网络不仅收敛速度快,且误差精度高。

关 键 词:粒子群算法  RBF神经网络  局部搜索算子  仿真

Algorithm Research of RBF Neural Network Based on Improved PSO
LI Hui , CAI Min , TAN Liang. Algorithm Research of RBF Neural Network Based on Improved PSO[J]. Fire Control & Command Control, 2012, 37(2): 144-146,150
Authors:LI Hui    CAI Min    TAN Liang
Affiliation:(Naval Command College Pukou Institute,Nanjing 211800,China)
Abstract:In view of the defect of particle swarm optimization which easily gets into partial extremum,an improved particle swarm optimization algorithm is put out,and the algorithm is applied to the parameter selecting of RBF neural network kernel function.The best parameter vector is searched in the whole space,according to coding means,iterative formula,fitness function which are mentionedin the paper.The proves that RBF neural network based on improved PSO has faster convergent speed,and higher error precision.
Keywords:particle swarm optimization  RBF neural network  Local searching operator  simulation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号