首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色理论的电子系统状态预测方法
引用本文:姚云峰,冯玉光,于磊,姜宇. 基于灰色理论的电子系统状态预测方法[J]. 火力与指挥控制, 2012, 37(5): 52-55,59
作者姓名:姚云峰  冯玉光  于磊  姜宇
作者单位:1. 海军航空工程学院,山东 烟台,264001
2. 装备技术质量监测站计量站,辽宁 旅顺,116041
基金项目:国家自然科学基金资助项目
摘    要:电子系统的状态预测是利用其历史信息来实现系统未来状态和趋势的估计,以防止灾难性故障的发生,对于推动视情维修具有重要意义。针对典型模拟滤波电路,通过分析其关键测试信号的特点,研究了基于灰色理论的状态预测方法,并针对该预测模型的不足,设计粒子群算法选择最佳预测维数,设计新陈代谢法使该模型参数在线改变,从而建立符合电子系统信号特点的灰色预测模型。将该模型与ARAM模型比较,实验结果验证了该模型具有较好的状态预测精度和预测性能。

关 键 词:状态预测  灰色模型  粒子群算法  新陈代谢法

The Study on State Prediction Method for Electronic System Based on Grey Theory
YAO Yun-feng , FENG Yu-guang , YU Lei , JIANG Yu. The Study on State Prediction Method for Electronic System Based on Grey Theory[J]. Fire Control & Command Control, 2012, 37(5): 52-55,59
Authors:YAO Yun-feng    FENG Yu-guang    YU Lei    JIANG Yu
Affiliation:1.Navy Aeronautical Engineering Institute,Yantai 264001,China,2.Metering Station,Quality Monitoring Station for Equipment and Technology,Lüshun 116041,China)
Abstract:The state prediction of electronic system usually makes full use of historical information to estimate its future state and tendency aiming at avoiding disastrous faults,which is very significant to the development of condition based maintenance.This thesis puts an analog filter circuit as an example and the state prediction technology based on grey theory is studied through analyzing the characters of its key testing signals,where particle swarm optimization algorithm is used to obtain the best forecast dimension and the metabolism method is presented to make the model parameters on-line change.Compared with the ARAM model,the experiment results show that the improved model has good precision and performance for state prediction.
Keywords:state prediction  grey model  particle swarm optimization algorithm  metabolism method
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号