首页 | 本学科首页   官方微博 | 高级检索  
     

多通道图注意力解耦社交推荐方法
引用本文:洪明利,王靖,贾彩燕. 多通道图注意力解耦社交推荐方法[J]. 国防科技大学学报, 2022, 44(3): 1-9. DOI: 10.11887/j.cn.202203001
作者姓名:洪明利  王靖  贾彩燕
作者单位:北京交通大学计算机与信息技术学院,北京 100044;北京交通大学交通数据分析与挖掘北京市重点实验室,北京 100044
基金项目:国家自然科学基金资助项目(61876016,61632004);中央高校基本科研业务费专项资金资助项目(2019JBZll0)
摘    要:提出具有解耦能力的多通道图注意力社交推荐模型,该模型主要包括深度聚类模块、多通道图注意力聚合模块和评分预测模块。其中,深度聚类模块用于对用户和项目进行分组,并利用聚类结果将用户社交图和用户项目图拆分成多个用户社交子图及用户项目子图,以学习用户兴趣分组及用户对不同类项目的兴趣;多通道图注意力聚合模块学习不同子图对预测结果的注意力;评分预测模块将学习到的用户表示向量和项目表示向量输入多层感知机进行评分预测。在多个真实数据集上的实验结果表明:提出的方法优于其他社交推荐算法。与最新的用于社交推荐的图神经网络方法相比,在Ciao和Epinions数据集上,均方根误差分别降低了2.26%和2.07%,平均绝对误差分别降低了2.58%和3.06%。

关 键 词:推荐系统  社交网络  图神经网络  注意力网络  深度聚类
收稿时间:2021-09-13
修稿时间:2022-05-31

Multi-channel graph attention network with disentangling capability for social recommendation
HONG Mingli,WANG Jing,JIA Caiyan. Multi-channel graph attention network with disentangling capability for social recommendation[J]. Journal of National University of Defense Technology, 2022, 44(3): 1-9. DOI: 10.11887/j.cn.202203001
Authors:HONG Mingli  WANG Jing  JIA Caiyan
Abstract:In recent years, graph neural networks have proved to be very powerful in learning graph structure data since social networks and user rating information in the social recommendation dataset can be represented as user-user social graph and user-item interaction graph. Social recommendation methods based on graph neural networks have gradually become a research hotspot in recommendation field. Nowadays, social recommendation models based on graph neural network are facing with the following challenges. 1) How to effectively extract and integrate user-user social information and user-item interactive information. 2) How to distinguish the users" purchase motivations. Therefore, in this study, we propose a Multi-channel Graph ATtention network with Disentangling capability for Social Recommendation named MGAT-D for social recommendation. This model mainly includes three modules: deep clustering module, the aggregation module based on multi-channel graph attention network, and the rating prediction module. Among them, the deep clustering module is used to group users and items. The clustering results can then be used to split user-user social graph and user-item interaction graph into multiple subgraphs to capture user interest groups and users" interests in different types of items. The aggregation module learns the attention of different sub-graphs related to prediction results. The rating prediction module merges user embeddings and item embeddings into the multi-layer perceptron (MLP) to predict the ratings. Extensive experiments on multiple real-world datasets demonstrate that the proposed model MGAN-D is better than other social recommendation algorithms. Specifically, compared with the latest state-of-the-art model GraphRec (Graph Neural Networks for Social Recommendation), the decrease of RMSE (Root Mean Square Error) on the Ciao and Epinions datasets is 2.58% and 3.06%, and that of MAE (Mean Absolute Error) is 2.26% and 2.07%, respectively.
Keywords:recommendation system   social network   graph neural network   attention network   deep clustering
本文献已被 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号