首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传模拟退火算法的空袭兵力分配及优化
引用本文:路建伟,唐松洁,周普,郭祺. 基于遗传模拟退火算法的空袭兵力分配及优化[J]. 海军工程大学学报, 2006, 18(5): 46-50
作者姓名:路建伟  唐松洁  周普  郭祺
作者单位:防空兵指挥学院,河南,郑州,450052
摘    要:对遗传模拟退火算法中的交叉、变异操作进行了改进,并实施了最优保留策略,形成了改进遗传模拟退火算法.以突击效果最大化和兵力损失最小化为目标函数,以空袭兵力总量的限制、空袭兵器挂载类型的限制等为约束条件,建立了空袭兵力分配及优化模型.在考虑兵力分配模型特点的基础上,利用改进遗传模拟退火算法求解.通过与多目标数学规划和标准遗传算法优化进行的比较表明,该方法能够有效地解决带约束的多目标优化问题.

关 键 词:空袭兵力  遗传算法  模拟退火  分配  优化
文章编号:1009-3486(2006)05-0046-05
修稿时间:2006-07-22

Distributing and optimizing air-raid forces based on genetic simulated annealing algorithm
LU Jian-wei,TANG Song-jie,ZHOU Pu,GUO Qi. Distributing and optimizing air-raid forces based on genetic simulated annealing algorithm[J]. Journal of Naval University of Engineering, 2006, 18(5): 46-50
Authors:LU Jian-wei  TANG Song-jie  ZHOU Pu  GUO Qi
Abstract:The crosser and mutation in the genetic simulated annealing algorithm have been improved.The optimized reserved strategy is used to form the improved genetic simulated annealing algorithm.With the largest destroying effectiveness and the least loss as the object function,and the limitation of the total number of the air-raid forces and the types of weapons as the restrictive terms,the air-raid forces distributing and optimizing model are established.Based on the features of air-raid forces distribution, the improved genetic simulated annealing algorithm is used in network reconfiguration.By comparing with multi-objective math programming and standard GA,the results show that this me-(thod) can solve the problem of constrained multi-objective optimization.
Keywords:air-raid forces  genetic algorithm  simulated annealing  distribute  optimization
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号