Dynamic order acceptance and capacity planning on a single bottleneck resource |
| |
Authors: | Jade Herbots Willy Herroelen Roel Leus |
| |
Affiliation: | 1. Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, Belgium;2. Department of Decision Sciences and Information Management, Katholieke Universiteit Leuven, BelgiumDepartment of Decision Sciences and Information Management, Katholieke Universiteit Leuven, Belgium |
| |
Abstract: | We present a tactical decision model for order acceptance and capacity planning that maximizes the expected profits from accepted orders, allowing for aggregate regular as well as nonregular capacity. The stream of incoming order arrivals is the main source of uncertainty in dynamic order acceptance and the company only has forecasts of the main properties of the future incoming projects. Project proposals arrive sequentially with deterministic interarrival times and a decision on order acceptance and capacity planning needs to be made each time a proposal arrives and its project characteristics are revealed. We apply stochastic dynamic programming to determine a profit threshold for the accept/reject decision as well as to deterministically allocate a single bottleneck resource to the accepted projects, both with an eye on maximizing the expected revenues within the problem horizon. We derive a number of managerial insights based on an analysis of the influence of project and environmental characteristics on optimal project selection and aggregate capacity usage. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007 |
| |
Keywords: | order acceptance capacity planning multiproject stochastic dynamic programming |
|
|