首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的稀疏序列Bayes反卷积方法研究
引用本文:徐慧峰,钱彦岭,温激鸿,邱静. 基于粒子群优化的稀疏序列Bayes反卷积方法研究[J]. 国防科技大学学报, 2008, 30(5): 103-107
作者姓名:徐慧峰  钱彦岭  温激鸿  邱静
作者单位:国防科技大学,机电工程与自动化学院,湖南,长沙,410073;国防科技大学,机电工程与自动化学院,湖南,长沙,410073;国防科技大学,机电工程与自动化学院,湖南,长沙,410073;国防科技大学,机电工程与自动化学院,湖南,长沙,410073
摘    要:在地下目标低频声波探测中,由于探测信号的混叠,难以判读反射目标的空间位置.应用信号处理方法求解时,目标信号是稀疏序列,求解方程是病态的.运用Bayes反卷积方法修正其病态性,并采用优化的粒子群算法求解,提高了系统的探测分辨率,同时降低了计算量.实际应用表明,该方法是有效的.

关 键 词:稀疏序列  粒子群优化  Bayes反卷积  声学探测
收稿时间:2008-02-18

Bayesian Deconvolution of Sparse Spike Trains by Particle Swarm Optimization
XU Huifeng,QIAN Yanling,WEN Jihong and QIU Jing. Bayesian Deconvolution of Sparse Spike Trains by Particle Swarm Optimization[J]. Journal of National University of Defense Technology, 2008, 30(5): 103-107
Authors:XU Huifeng  QIAN Yanling  WEN Jihong  QIU Jing
Affiliation:XU Hui-feng,QIAN Yan-ling,WEN Ji-hong,QIU Jing (College of Mechatronics Engineering , Automation,National Univ.of Defense Technology,Changsha 410073,China)
Abstract:Because of the aliasing of the received waves and the sparse structure of the reflection signals,the temporal resolution is not good in acoustic detection of buried objects with low frequency waves.Thus,the problem of resolving the reflection position is notoriously ill-posed.In this paper,a maximum a posteriori estimator is presented to regularize the ill-posed problem,and an algorithm of particle swarm optimization is proposed to improve temporal resolution and reduce execution time.The results from resea...
Keywords:sparse spike trains  Particle Swarm Optimization(PSO)  bayesian deconvolution  acoustic detection  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号