Locating facilities in three-dimensional space by convex programming |
| |
Authors: | Robert F. Love |
| |
Abstract: | We consider the problem of simultaneously locating any number of facilities in three-dimensional Euclidean space. The criterion to be satisfied is that of minimizing the total cost of some activity between the facilities to be located and any number of fixed locations. Any amount of activity may be present between any pair of the facilities themselves. The total cost is assumed to be a linear function of the inter-facility and facility-to-fixed locations distances. Since the total cost function for this problem is convex, a unique optimal solution exists. Certain discontinuities are shown to exist in the derivatives of the total cost function which previously has prevented the successful use of gradient computing methods for locating optimal solutions. This article demonstrates the use of a created function which possesses all the necessary properties for ensuring the convergence of first order gradient techniques and is itself uniformly convergent to the actual objective function. Use of the fitted function and the dual problem in the case of constrained problems enables solutions to be determined within any predetermined degree of accuracy. Some computation results are given for both constrained and unconstrained problems. |
| |
Keywords: | |
|
|