首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于KKT条件的SVM增量学习算法
作者姓名:
曹健
孙世宇
段修生
张泽建
作者单位:
军械工程学院;解放军71834部队;
摘 要:
为了解决支持向量机(SVM)在增量学习时,由于支持向量选择不完全,导致增量学习过程无法持久进行的问题,提出了最大似然边界SVM增量学习算法。该方法在深入分析分类面变化趋势的基础上,充分利用KKT条件,选择包含支持向量的边界向量参与SVM增量学习。实验表明,该算法可以完全覆盖支持向量,与经典支持向量机算法的结果完全相同,并且节省了大量时间,为今后大样本分类和增量学习的可持续性提供了条件。
关 键 词:
支持向量机
增量学习
KKT条件
本文献已被
CNKI
等数据库收录!
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号