首页 | 本学科首页   官方微博 | 高级检索  
     

地面目标特征识别与无人飞行器位姿估计
引用本文:张梁,徐锦法,夏青元,于永军. 地面目标特征识别与无人飞行器位姿估计[J]. 国防科技大学学报, 2015, 37(1): 159-164
作者姓名:张梁  徐锦法  夏青元  于永军
作者单位:1. 南京航空航天大学 直升机旋翼动力学国家级重点实验室,江苏 南京,210016
2. 南京理工大学 高维信息智能感知与系统教育部重点实验室,江苏 南京,210094
基金项目:装备预研基金项目(9140C400504130C40003);中国博士后科学基金(2013M541668);江苏高校优势学科建设工程资助项目;高维信息智能感知与系统教育部重点实验室(南京理工大学)基金资助(30920140122006)
摘    要:针对小型无人飞行器位置姿态估计问题,提出了一种基于视觉图像目标特征的相对位姿估计算法。应用Camshift算法获取目标初始位置,利用非线性尺度空间下的KAZE特征进行跟踪区域特征点提取,与源目标特征点进行匹配,得到精确的目标位置信息,实现了在图像平面内的目标快速跟踪,并得到机体轴系下无人飞行器与目标间相对位置和姿态角的估计值。对算法进行了实验验证,具有优良的跟踪性和实时性。

关 键 词:无人飞行器  目标识别  位姿估计  KAZE特征  Camshift算法
收稿时间:2014-05-28

Feature Recognition of Ground Target and Position and Attitude Estimation for Unmanned Aerial Vehicle
ZHANG Liang,XU Jinf,XIA Qingyuan and YU Yongjun. Feature Recognition of Ground Target and Position and Attitude Estimation for Unmanned Aerial Vehicle[J]. Journal of National University of Defense Technology, 2015, 37(1): 159-164
Authors:ZHANG Liang  XU Jinf  XIA Qingyuan  YU Yongjun
Affiliation:ZHANG Liang;XU Jinfa;XIA Qingyuan;YU Yongjun;National key Laboratory of Rotorcraft Aeromechanics,Nanjing University of Aeronautics and Astronautics;Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information,Ministry of Education,Nanjing University of Science and Technology;
Abstract:To aim at the problem of position and attitude estimation for UAV, a relative position and attitude estimation algorithm based on target features in image is proposed. The initial location of the target was obtained with Camshift algorithm. The feature points in tracking area was picked up with KAZE features based on the nonlinear scale space, which are used to match with the feature points of the source target. The exact location of the target can be obtained. The target can be tracked quickly in the picture plane. The estimation of relative position and attitude between the unmanned aerial vehicle and target was conducted in the body frame of axes. Some experiments were fulfilled for the verification of the algorithm. The results show that the estimation error of the proposed algorism is little. This algorithm has strong tracking and real-time performance.
Keywords:UAV   Target recognition   Position/attitude estimation   KAZE features   Camshift.
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号