首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波域字典学习方法的图像双重稀疏表示
引用本文:梁锐华,成礼智. 基于小波域字典学习方法的图像双重稀疏表示[J]. 国防科技大学学报, 2012, 34(4): 126-131
作者姓名:梁锐华  成礼智
作者单位:国防科技大学理学院,湖南长沙,410073
基金项目:国家自然科学基金资助项目
摘    要:提出了一种有效地结构化字典生成算法以及图像双重稀疏表示方法.在Rubinstein等提出的图像双重稀疏表示模型的基础上,引入小波零树结构,将同一空间位置对应的同方向跨尺度小波基函数的线性组合作为新的基函数,并通过K-SVD学习算法得到线性组合系数,由此得到了一种更加切合图像方向特征的结构化字典学习算法.在此基础上提出了相应的图像分解与重构算法.遥感图像M项逼近实验以及压缩仿真实验表明,本文提出的结构化字典比已有的字典具有更好的图像稀疏表示效果.

关 键 词:稀疏表示  字典学习  小波  零树  图像压缩
收稿时间:2011-08-25

Double sparse image representation via learning dictionaries in wavelet domain
LIANG Ruihua and CHENG Lizhi. Double sparse image representation via learning dictionaries in wavelet domain[J]. Journal of National University of Defense Technology, 2012, 34(4): 126-131
Authors:LIANG Ruihua and CHENG Lizhi
Affiliation:(College of Science,National University of Defense Technology,Changsha 410073,China)
Abstract:A novel structured dictionary training algorithm is proposed for double sparse image representation.Based on the double sparse image representation model proposed by Rubinstein,the zero-tree structure of wavelet coefficients was introduced,and the new dictionary atoms were constructed by linear combination of wavelet bases in all high-frequency bands of same orientation across different scales.The linear combination coefficients were learned via K-SVD.The image decomposition and reconstruction algorithm was proposed based on the learned dictionary.The M-term approximation and compression of remote sensing images both proved the better effects of the proposed structured dictionary than the existing dictionaries.
Keywords:sparse representation  dictionary learning  wavelet  zero-tree  image compression
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号