Abstract: | Single- and multi-facility location problems are often solved with iterative computational procedures. Although these procedures have proven to converage, in practice it is desirable to be able to compute a lower bound on the objective function at each iteration. This enables the user to stop the iterative process when the objective function is within a prespecified tolerance of the optimum value. In this article we generalize a new bounding method to include multi-facility problems with lp distances. A proof is given that for Euclidean distance problems the new bounding procedure is superior to two other known methods. Numerical results are given for the three methods. |