首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子滤波的活动轮廓模型视频跟踪(英文)
引用本文:陈义,李言俊,孙小炜. 基于粒子滤波的活动轮廓模型视频跟踪(英文)[J]. 火力与指挥控制, 2010, 35(9)
作者姓名:陈义  李言俊  孙小炜
作者单位:西北工业大学航天学院,西安,710072
基金项目:国家自然科学基金,西北工业大学研究生创新实验中心基金 
摘    要:跟踪变形目标包括假定目标的全局运动和时间方程的局部变形。粒子滤波算法依靠参数化法选择,但是不能处理曲线的拓扑变化。活动轮廓模型是独立参数化,可以比较好地适应拓扑变化。基于上面两个方法的局限性,将上述两种方法相结合,运用于变形目标的跟踪。实验结果证明,该方法有很强的鲁棒性,对部分遮挡的物体有很强的适应性,证明了该方法的有效性。

关 键 词:活动轮廓模型  粒子滤波  部分遮挡  目标跟踪

Geometric Active Contours Using Particle Filtering
CHEN Yi,LI Yan-Jun,SUN Xiao-Wei. Geometric Active Contours Using Particle Filtering[J]. Fire Control & Command Control, 2010, 35(9)
Authors:CHEN Yi  LI Yan-Jun  SUN Xiao-Wei
Abstract:Tracking deforming objects involves estimating the global motion of the object and its local deformations as a function of time. Tracking algorithms using particle filtering is dependent on the chosen parametrization and cannot process changes in curve topology. Geometric active contours which is paramaetrization independent and allow for changes in topology is adopted. A particle filtering algorithm in the geometric active contour framework is formulated that can be used for tracking moving and deforming objects. The experimental results show that the algorithm is computationally efficient and robust to changes in topology, patial occlusion and interactions of non-rigid objects.
Keywords:geometric active contours  particle filtering  occlusion detection  object tracking
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号