首页 | 本学科首页   官方微博 | 高级检索  
     

关于流形及其子流形的两类曲率关系
引用本文:许飞,张迪,曹贻鹏,王素云. 关于流形及其子流形的两类曲率关系[J]. 装甲兵工程学院学报, 2011, 25(3): 100-102
作者姓名:许飞  张迪  曹贻鹏  王素云
作者单位:1. 装甲兵工程学院基础部,北京,100072
2. 装甲兵工程学院控制工程系,北京,100072
摘    要:将Riemann子流形理论推广到Finsler子流形中,并且根据子流形诱导的联络和本身联络不同的特点,利用Chern联络计算了流形及其子流形的Landsberg曲率和S曲率关系,为子流形的进一步研究提供了便利。

关 键 词:Cartan挠率  Chern联络  Finsler度量  Landsberg曲率  S曲率

Relation of Two Kinds of Curvatures on Manifolds and Submanifolds
XU Fei,ZHANG Di,CAO Yi-peng,WANG Su-yun. Relation of Two Kinds of Curvatures on Manifolds and Submanifolds[J]. Journal of Armored Force Engineering Institute, 2011, 25(3): 100-102
Authors:XU Fei  ZHANG Di  CAO Yi-peng  WANG Su-yun
Affiliation:XU Fei1,ZHANG Di2,CAO Yi-peng1,WANG Su-yun1(1.Department of Fundamental Courses,Academy of Armored Force Engineering,Beijing 100072,China,2.Department of Control Engineering,China)
Abstract:In this paper,submanifold theory of Riemann is generalized to submanifold of Finsler.According to the differences between induction connection and nature connection of submanifold,the relation between landsberg curvature and S curvature on manifold and submanifold is deduced by using the Chern connection,providing basis for the further research of submanifolds.
Keywords:Cartan torsion  Chern connection  Finsler measurement  Landsberg curvature  S curvature  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号